Classifying galaxies according to their Hi content Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1093/mnras/staa234
We use machine learning to classify galaxies according to their Hi content, based on both their optical photometry and environmental properties. The data used for our analyses are the outputs in the range z = 0 − 1 from Mufasa cosmological hydrodynamic simulation. In our previous paper, where we predicted the galaxy Hi content using the same input features, Hi rich galaxies were only selected for the training. In order for the predictions on real observation data to be more accurate, the classifiers built in this study will first establish if a galaxy is Hi rich ($\rm {log(M_{H{\small I}}/M_{*})} > -2$) before estimating its neutral hydrogen content using the regressors developed in the first paper. We resort to various machine learning algorithms and assess their performance with some metrics such as accuracy, f1, AUC PR, precision, specificity and log loss. The performance of the classifiers, as opposed to that of the regressors in previous paper, gets better with increasing redshift and reaches their peak performance around z = 1 then starts to decline at even higher z. Random Forest method, the most robust among the classifiers when considering only the mock data for both training and test in this study, reaches an accuracy above $98.6 \%$ at z = 0 and above $99.0 \%$ at z = 1, which translates to a AUC PR above $99.93\%$ at low redshift and above $99.98\%$ at higher one. We test our algorithms, trained with simulation data, on classification of the galaxies in RESOLVE, ALFALFA and GASS surveys. Interestingly, SVM algorithm, the best classifier for the tests, achieves a precision, the relevant metric for the tests, above $87.60\%$ and a specificity above $71.4\%$ with all the tests, indicating that the classifier is capable of learning from the simulated data to classify Hi rich/Hi poor galaxies from the real observation data. With the advent of large Hi 21 cm surveys such as the SKA, this set of classifiers, together with the regressors developed in the first paper, will be part of a pipeline, a very useful tool, which is aimed at predicting Hi content of galaxies.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/mnras/staa234
- OA Status
- green
- Cited By
- 3
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2950362771
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2950362771Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/mnras/staa234Digital Object Identifier
- Title
-
Classifying galaxies according to their Hi contentWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-24Full publication date if available
- Authors
-
Sambatra Andrianomena, Mika Rafieferantsoa, Romeel DavèList of authors in order
- Landing page
-
https://doi.org/10.1093/mnras/staa234Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1906.04198Direct OA link when available
- Concepts
-
Physics, Galaxy, Random forest, Redshift, Classifier (UML), Content (measure theory), Astrophysics, Artificial intelligence, Photometry (optics), Support vector machine, Test data, Machine learning, Pattern recognition (psychology), Computer science, Stars, Mathematics, Mathematical analysis, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1, 2020: 1, 2019: 1Per-year citation counts (last 5 years)
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2950362771 |
|---|---|
| doi | https://doi.org/10.1093/mnras/staa234 |
| ids.doi | https://doi.org/10.1093/mnras/staa234 |
| ids.mag | 2950362771 |
| ids.openalex | https://openalex.org/W2950362771 |
| fwci | 0.28425603 |
| type | article |
| title | Classifying galaxies according to their Hi content |
| awards[0].id | https://openalex.org/G5108466620 |
| awards[0].funder_id | https://openalex.org/F4320334632 |
| awards[0].display_name | |
| awards[0].funder_award_id | ST/R000972/1 |
| awards[0].funder_display_name | Science and Technology Facilities Council |
| awards[1].id | https://openalex.org/G6513067058 |
| awards[1].funder_id | https://openalex.org/F4320334632 |
| awards[1].display_name | |
| awards[1].funder_award_id | ST/M001229/1 |
| awards[1].funder_display_name | Science and Technology Facilities Council |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10026 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3103 |
| topics[0].subfield.display_name | Astronomy and Astrophysics |
| topics[0].display_name | Galaxies: Formation, Evolution, Phenomena |
| topics[1].id | https://openalex.org/T12917 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9966999888420105 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3105 |
| topics[1].subfield.display_name | Instrumentation |
| topics[1].display_name | Astronomy and Astrophysical Research |
| topics[2].id | https://openalex.org/T11323 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9925000071525574 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3103 |
| topics[2].subfield.display_name | Astronomy and Astrophysics |
| topics[2].display_name | Gamma-ray bursts and supernovae |
| funders[0].id | https://openalex.org/F4320334632 |
| funders[0].ror | https://ror.org/057g20z61 |
| funders[0].display_name | Science and Technology Facilities Council |
| is_xpac | False |
| apc_list.value | 2310 |
| apc_list.currency | GBP |
| apc_list.value_usd | 2833 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C121332964 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8108905553817749 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[0].display_name | Physics |
| concepts[1].id | https://openalex.org/C98444146 |
| concepts[1].level | 2 |
| concepts[1].score | 0.707615852355957 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q318 |
| concepts[1].display_name | Galaxy |
| concepts[2].id | https://openalex.org/C169258074 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6484363079071045 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[2].display_name | Random forest |
| concepts[3].id | https://openalex.org/C33024259 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5626165866851807 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q76250 |
| concepts[3].display_name | Redshift |
| concepts[4].id | https://openalex.org/C95623464 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5306766629219055 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[4].display_name | Classifier (UML) |
| concepts[5].id | https://openalex.org/C2778152352 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5075110793113708 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5165061 |
| concepts[5].display_name | Content (measure theory) |
| concepts[6].id | https://openalex.org/C44870925 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4539766311645508 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q37547 |
| concepts[6].display_name | Astrophysics |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4528138041496277 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C68271606 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4473678767681122 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q625648 |
| concepts[8].display_name | Photometry (optics) |
| concepts[9].id | https://openalex.org/C12267149 |
| concepts[9].level | 2 |
| concepts[9].score | 0.417164146900177 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[9].display_name | Support vector machine |
| concepts[10].id | https://openalex.org/C16910744 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41388681530952454 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7705759 |
| concepts[10].display_name | Test data |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3961696922779083 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.378897100687027 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C41008148 |
| concepts[13].level | 0 |
| concepts[13].score | 0.2153734564781189 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[13].display_name | Computer science |
| concepts[14].id | https://openalex.org/C150846664 |
| concepts[14].level | 2 |
| concepts[14].score | 0.15958106517791748 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7602306 |
| concepts[14].display_name | Stars |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.08054134249687195 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| concepts[17].id | https://openalex.org/C199360897 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[17].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/physics |
| keywords[0].score | 0.8108905553817749 |
| keywords[0].display_name | Physics |
| keywords[1].id | https://openalex.org/keywords/galaxy |
| keywords[1].score | 0.707615852355957 |
| keywords[1].display_name | Galaxy |
| keywords[2].id | https://openalex.org/keywords/random-forest |
| keywords[2].score | 0.6484363079071045 |
| keywords[2].display_name | Random forest |
| keywords[3].id | https://openalex.org/keywords/redshift |
| keywords[3].score | 0.5626165866851807 |
| keywords[3].display_name | Redshift |
| keywords[4].id | https://openalex.org/keywords/classifier |
| keywords[4].score | 0.5306766629219055 |
| keywords[4].display_name | Classifier (UML) |
| keywords[5].id | https://openalex.org/keywords/content |
| keywords[5].score | 0.5075110793113708 |
| keywords[5].display_name | Content (measure theory) |
| keywords[6].id | https://openalex.org/keywords/astrophysics |
| keywords[6].score | 0.4539766311645508 |
| keywords[6].display_name | Astrophysics |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.4528138041496277 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/photometry |
| keywords[8].score | 0.4473678767681122 |
| keywords[8].display_name | Photometry (optics) |
| keywords[9].id | https://openalex.org/keywords/support-vector-machine |
| keywords[9].score | 0.417164146900177 |
| keywords[9].display_name | Support vector machine |
| keywords[10].id | https://openalex.org/keywords/test-data |
| keywords[10].score | 0.41388681530952454 |
| keywords[10].display_name | Test data |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.3961696922779083 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.378897100687027 |
| keywords[12].display_name | Pattern recognition (psychology) |
| keywords[13].id | https://openalex.org/keywords/computer-science |
| keywords[13].score | 0.2153734564781189 |
| keywords[13].display_name | Computer science |
| keywords[14].id | https://openalex.org/keywords/stars |
| keywords[14].score | 0.15958106517791748 |
| keywords[14].display_name | Stars |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.08054134249687195 |
| keywords[15].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1093/mnras/staa234 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S195663288 |
| locations[0].source.issn | 0035-8711, 1365-2966, 1365-8711 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0035-8711 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Monthly Notices of the Royal Astronomical Society |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Monthly Notices of the Royal Astronomical Society |
| locations[0].landing_page_url | https://doi.org/10.1093/mnras/staa234 |
| locations[1].id | pmh:oai:arXiv.org:1906.04198 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/1906.04198 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/1906.04198 |
| locations[2].id | pmh:oai:repository.uwc.ac.za:10566/5905 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306400180 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | UWC Research Repository (University of the Western Cape) |
| locations[2].source.host_organization | https://openalex.org/I869660684 |
| locations[2].source.host_organization_name | University of the Western Cape |
| locations[2].source.host_organization_lineage | https://openalex.org/I869660684 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://hdl.handle.net/10566/5905 |
| indexed_in | arxiv, crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5038445526 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5957-0719 |
| authorships[0].author.display_name | Sambatra Andrianomena |
| authorships[0].countries | ZA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I869660684 |
| authorships[0].affiliations[0].raw_affiliation_string | University of the Western Cape, Bellville, Cape Town 7535, South South Africa |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210116079 |
| authorships[0].affiliations[1].raw_affiliation_string | South African Radio Astronomy Observatory (SARAO), Black River Park, Observatory, Cape Town, 7925, South Africa |
| authorships[0].institutions[0].id | https://openalex.org/I4210116079 |
| authorships[0].institutions[0].ror | https://ror.org/022j2n646 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210116079, https://openalex.org/I866804994 |
| authorships[0].institutions[0].country_code | ZA |
| authorships[0].institutions[0].display_name | South African Radio Astronomy Observatory |
| authorships[0].institutions[1].id | https://openalex.org/I869660684 |
| authorships[0].institutions[1].ror | https://ror.org/00h2vm590 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I869660684 |
| authorships[0].institutions[1].country_code | ZA |
| authorships[0].institutions[1].display_name | University of the Western Cape |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sambatra Andrianomena |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | South African Radio Astronomy Observatory (SARAO), Black River Park, Observatory, Cape Town, 7925, South Africa, University of the Western Cape, Bellville, Cape Town 7535, South South Africa |
| authorships[1].author.id | https://openalex.org/A5007714351 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Mika Rafieferantsoa |
| authorships[1].countries | DE, ZA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210103661 |
| authorships[1].affiliations[0].raw_affiliation_string | Max-Planck-Institüt für Astrophysik, Garching, Germany |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I869660684 |
| authorships[1].affiliations[1].raw_affiliation_string | University of the Western Cape, Bellville, Cape Town 7535, South South Africa |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I4210116079 |
| authorships[1].affiliations[2].raw_affiliation_string | South African Astronomical Observatory, Observatory, Cape Town 7925, South South Africa |
| authorships[1].institutions[0].id | https://openalex.org/I4210103661 |
| authorships[1].institutions[0].ror | https://ror.org/017qcv467 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I149899117, https://openalex.org/I4210103661 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Max Planck Institute for Astrophysics |
| authorships[1].institutions[1].id | https://openalex.org/I4210116079 |
| authorships[1].institutions[1].ror | https://ror.org/022j2n646 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210116079, https://openalex.org/I866804994 |
| authorships[1].institutions[1].country_code | ZA |
| authorships[1].institutions[1].display_name | South African Radio Astronomy Observatory |
| authorships[1].institutions[2].id | https://openalex.org/I869660684 |
| authorships[1].institutions[2].ror | https://ror.org/00h2vm590 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I869660684 |
| authorships[1].institutions[2].country_code | ZA |
| authorships[1].institutions[2].display_name | University of the Western Cape |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mika Rafieferantsoa |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Max-Planck-Institüt für Astrophysik, Garching, Germany, South African Astronomical Observatory, Observatory, Cape Town 7925, South South Africa, University of the Western Cape, Bellville, Cape Town 7535, South South Africa |
| authorships[2].author.id | https://openalex.org/A5014522902 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2842-9434 |
| authorships[2].author.display_name | Romeel Davè |
| authorships[2].countries | GB, ZA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I869660684 |
| authorships[2].affiliations[0].raw_affiliation_string | University of the Western Cape, Bellville, Cape Town 7535, South South Africa |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210116079 |
| authorships[2].affiliations[1].raw_affiliation_string | South African Astronomical Observatory, Observatory, Cape Town 7925, South South Africa |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I4210105583, https://openalex.org/I98677209 |
| authorships[2].affiliations[2].raw_affiliation_string | Institute for Astronomy, Royal Observatory, University of Edinburgh, Edinburgh, EH9 3HJ, UK |
| authorships[2].institutions[0].id | https://openalex.org/I4210105583 |
| authorships[2].institutions[0].ror | https://ror.org/016kj2436 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210105583 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Royal Observatory |
| authorships[2].institutions[1].id | https://openalex.org/I98677209 |
| authorships[2].institutions[1].ror | https://ror.org/01nrxwf90 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I98677209 |
| authorships[2].institutions[1].country_code | GB |
| authorships[2].institutions[1].display_name | University of Edinburgh |
| authorships[2].institutions[2].id | https://openalex.org/I4210116079 |
| authorships[2].institutions[2].ror | https://ror.org/022j2n646 |
| authorships[2].institutions[2].type | facility |
| authorships[2].institutions[2].lineage | https://openalex.org/I4210116079, https://openalex.org/I866804994 |
| authorships[2].institutions[2].country_code | ZA |
| authorships[2].institutions[2].display_name | South African Radio Astronomy Observatory |
| authorships[2].institutions[3].id | https://openalex.org/I869660684 |
| authorships[2].institutions[3].ror | https://ror.org/00h2vm590 |
| authorships[2].institutions[3].type | education |
| authorships[2].institutions[3].lineage | https://openalex.org/I869660684 |
| authorships[2].institutions[3].country_code | ZA |
| authorships[2].institutions[3].display_name | University of the Western Cape |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Romeel Davé |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute for Astronomy, Royal Observatory, University of Edinburgh, Edinburgh, EH9 3HJ, UK, South African Astronomical Observatory, Observatory, Cape Town 7925, South South Africa, University of the Western Cape, Bellville, Cape Town 7535, South South Africa |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1906.04198 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Classifying galaxies according to their Hi content |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10026 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3103 |
| primary_topic.subfield.display_name | Astronomy and Astrophysics |
| primary_topic.display_name | Galaxies: Formation, Evolution, Phenomena |
| related_works | https://openalex.org/W4280639524, https://openalex.org/W4224052708, https://openalex.org/W3098873904, https://openalex.org/W1669684677, https://openalex.org/W4304143205, https://openalex.org/W3126812871, https://openalex.org/W95707854, https://openalex.org/W2053546369, https://openalex.org/W2889302474, https://openalex.org/W3101081936 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2020 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2019 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:1906.04198 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1906.04198 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1906.04198 |
| primary_location.id | doi:10.1093/mnras/staa234 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S195663288 |
| primary_location.source.issn | 0035-8711, 1365-2966, 1365-8711 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0035-8711 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Monthly Notices of the Royal Astronomical Society |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Monthly Notices of the Royal Astronomical Society |
| primary_location.landing_page_url | https://doi.org/10.1093/mnras/staa234 |
| publication_date | 2020-01-24 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W4300719359, https://openalex.org/W1587746149, https://openalex.org/W1991024873, https://openalex.org/W3099825469, https://openalex.org/W2093697839, https://openalex.org/W2066784856, https://openalex.org/W2792591694, https://openalex.org/W2530211828, https://openalex.org/W1987522415, https://openalex.org/W2157917411, https://openalex.org/W2061959687, https://openalex.org/W2791795964, https://openalex.org/W2024691091, https://openalex.org/W2064921519, https://openalex.org/W2555968095, https://openalex.org/W2144888001, https://openalex.org/W2156899877, https://openalex.org/W4292875581, https://openalex.org/W2095698721, https://openalex.org/W2111356925, https://openalex.org/W1965131794, https://openalex.org/W2146374955, https://openalex.org/W2528477579, https://openalex.org/W3103737884, https://openalex.org/W2902957352 |
| referenced_works_count | 25 |
| abstract_inverted_index.0 | 36, 210 |
| abstract_inverted_index.1 | 38, 169 |
| abstract_inverted_index.= | 35, 168, 209, 217 |
| abstract_inverted_index.a | 92, 222, 265, 276, 337, 339 |
| abstract_inverted_index.z | 34, 167, 208, 216 |
| abstract_inverted_index.1, | 218 |
| abstract_inverted_index.21 | 313 |
| abstract_inverted_index.Hi | 11, 53, 60, 95, 298, 312, 348 |
| abstract_inverted_index.In | 44, 69 |
| abstract_inverted_index.PR | 224 |
| abstract_inverted_index.We | 1, 116, 236 |
| abstract_inverted_index.an | 202 |
| abstract_inverted_index.as | 131, 146, 317 |
| abstract_inverted_index.at | 174, 207, 215, 227, 233, 346 |
| abstract_inverted_index.be | 79, 334 |
| abstract_inverted_index.cm | 314 |
| abstract_inverted_index.if | 91 |
| abstract_inverted_index.in | 31, 85, 112, 153, 198, 249, 329 |
| abstract_inverted_index.is | 94, 288, 344 |
| abstract_inverted_index.of | 143, 150, 246, 290, 310, 322, 336, 350 |
| abstract_inverted_index.on | 14, 74, 244 |
| abstract_inverted_index.to | 5, 9, 78, 118, 148, 172, 221, 296 |
| abstract_inverted_index.we | 49 |
| abstract_inverted_index.z. | 177 |
| abstract_inverted_index.AUC | 134, 223 |
| abstract_inverted_index.PR, | 135 |
| abstract_inverted_index.SVM | 256 |
| abstract_inverted_index.The | 22, 141 |
| abstract_inverted_index.\%$ | 206, 214 |
| abstract_inverted_index.all | 281 |
| abstract_inverted_index.and | 19, 123, 138, 161, 196, 211, 230, 252, 275 |
| abstract_inverted_index.are | 28 |
| abstract_inverted_index.f1, | 133 |
| abstract_inverted_index.for | 25, 66, 71, 193, 261, 270 |
| abstract_inverted_index.its | 104 |
| abstract_inverted_index.log | 139 |
| abstract_inverted_index.low | 228 |
| abstract_inverted_index.our | 26, 45, 238 |
| abstract_inverted_index.set | 321 |
| abstract_inverted_index.the | 29, 32, 51, 56, 67, 72, 82, 109, 113, 144, 151, 181, 185, 190, 247, 258, 262, 267, 271, 282, 286, 293, 303, 308, 318, 326, 330 |
| abstract_inverted_index.use | 2 |
| abstract_inverted_index.− | 37 |
| abstract_inverted_index.-2$) | 101 |
| abstract_inverted_index.GASS | 253 |
| abstract_inverted_index.SKA, | 319 |
| abstract_inverted_index.With | 307 |
| abstract_inverted_index.best | 259 |
| abstract_inverted_index.both | 15, 194 |
| abstract_inverted_index.data | 23, 77, 192, 295 |
| abstract_inverted_index.even | 175 |
| abstract_inverted_index.from | 39, 292, 302 |
| abstract_inverted_index.gets | 156 |
| abstract_inverted_index.mock | 191 |
| abstract_inverted_index.more | 80 |
| abstract_inverted_index.most | 182 |
| abstract_inverted_index.one. | 235 |
| abstract_inverted_index.only | 64, 189 |
| abstract_inverted_index.part | 335 |
| abstract_inverted_index.peak | 164 |
| abstract_inverted_index.poor | 300 |
| abstract_inverted_index.real | 75, 304 |
| abstract_inverted_index.rich | 61, 96 |
| abstract_inverted_index.same | 57 |
| abstract_inverted_index.some | 128 |
| abstract_inverted_index.such | 130, 316 |
| abstract_inverted_index.test | 197, 237 |
| abstract_inverted_index.that | 149, 285 |
| abstract_inverted_index.then | 170 |
| abstract_inverted_index.this | 86, 199, 320 |
| abstract_inverted_index.used | 24 |
| abstract_inverted_index.very | 340 |
| abstract_inverted_index.were | 63 |
| abstract_inverted_index.when | 187 |
| abstract_inverted_index.will | 88, 333 |
| abstract_inverted_index.with | 127, 158, 241, 280, 325 |
| abstract_inverted_index.$98.6 | 205 |
| abstract_inverted_index.$99.0 | 213 |
| abstract_inverted_index.($\rm | 97 |
| abstract_inverted_index.above | 204, 212, 225, 231, 273, 278 |
| abstract_inverted_index.aimed | 345 |
| abstract_inverted_index.among | 184 |
| abstract_inverted_index.based | 13 |
| abstract_inverted_index.built | 84 |
| abstract_inverted_index.data, | 243 |
| abstract_inverted_index.data. | 306 |
| abstract_inverted_index.first | 89, 114, 331 |
| abstract_inverted_index.input | 58 |
| abstract_inverted_index.large | 311 |
| abstract_inverted_index.loss. | 140 |
| abstract_inverted_index.order | 70 |
| abstract_inverted_index.range | 33 |
| abstract_inverted_index.study | 87 |
| abstract_inverted_index.their | 10, 16, 125, 163 |
| abstract_inverted_index.tool, | 342 |
| abstract_inverted_index.using | 55, 108 |
| abstract_inverted_index.where | 48 |
| abstract_inverted_index.which | 219, 343 |
| abstract_inverted_index.Forest | 179 |
| abstract_inverted_index.Mufasa | 40 |
| abstract_inverted_index.Random | 178 |
| abstract_inverted_index.advent | 309 |
| abstract_inverted_index.around | 166 |
| abstract_inverted_index.assess | 124 |
| abstract_inverted_index.before | 102 |
| abstract_inverted_index.better | 157 |
| abstract_inverted_index.galaxy | 52, 93 |
| abstract_inverted_index.higher | 176, 234 |
| abstract_inverted_index.metric | 269 |
| abstract_inverted_index.paper, | 47, 155, 332 |
| abstract_inverted_index.paper. | 115 |
| abstract_inverted_index.resort | 117 |
| abstract_inverted_index.robust | 183 |
| abstract_inverted_index.starts | 171 |
| abstract_inverted_index.study, | 200 |
| abstract_inverted_index.tests, | 263, 272, 283 |
| abstract_inverted_index.useful | 341 |
| abstract_inverted_index.ALFALFA | 251 |
| abstract_inverted_index.capable | 289 |
| abstract_inverted_index.content | 54, 107, 349 |
| abstract_inverted_index.decline | 173 |
| abstract_inverted_index.machine | 3, 120 |
| abstract_inverted_index.method, | 180 |
| abstract_inverted_index.metrics | 129 |
| abstract_inverted_index.neutral | 105 |
| abstract_inverted_index.opposed | 147 |
| abstract_inverted_index.optical | 17 |
| abstract_inverted_index.outputs | 30 |
| abstract_inverted_index.reaches | 162, 201 |
| abstract_inverted_index.rich/Hi | 299 |
| abstract_inverted_index.surveys | 315 |
| abstract_inverted_index.trained | 240 |
| abstract_inverted_index.various | 119 |
| abstract_inverted_index.$71.4\%$ | 279 |
| abstract_inverted_index.> | 100 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.RESOLVE, | 250 |
| abstract_inverted_index.accuracy | 203 |
| abstract_inverted_index.achieves | 264 |
| abstract_inverted_index.analyses | 27 |
| abstract_inverted_index.classify | 6, 297 |
| abstract_inverted_index.content, | 12 |
| abstract_inverted_index.galaxies | 7, 62, 248, 301 |
| abstract_inverted_index.hydrogen | 106 |
| abstract_inverted_index.learning | 4, 121, 291 |
| abstract_inverted_index.previous | 46, 154 |
| abstract_inverted_index.redshift | 160, 229 |
| abstract_inverted_index.relevant | 268 |
| abstract_inverted_index.selected | 65 |
| abstract_inverted_index.surveys. | 254 |
| abstract_inverted_index.together | 324 |
| abstract_inverted_index.training | 195 |
| abstract_inverted_index.$87.60\%$ | 274 |
| abstract_inverted_index.$99.93\%$ | 226 |
| abstract_inverted_index.$99.98\%$ | 232 |
| abstract_inverted_index.according | 8 |
| abstract_inverted_index.accuracy, | 132 |
| abstract_inverted_index.accurate, | 81 |
| abstract_inverted_index.developed | 111, 328 |
| abstract_inverted_index.establish | 90 |
| abstract_inverted_index.features, | 59 |
| abstract_inverted_index.galaxies. | 351 |
| abstract_inverted_index.pipeline, | 338 |
| abstract_inverted_index.predicted | 50 |
| abstract_inverted_index.simulated | 294 |
| abstract_inverted_index.training. | 68 |
| abstract_inverted_index.algorithm, | 257 |
| abstract_inverted_index.algorithms | 122 |
| abstract_inverted_index.classifier | 260, 287 |
| abstract_inverted_index.estimating | 103 |
| abstract_inverted_index.increasing | 159 |
| abstract_inverted_index.indicating | 284 |
| abstract_inverted_index.photometry | 18 |
| abstract_inverted_index.precision, | 136, 266 |
| abstract_inverted_index.predicting | 347 |
| abstract_inverted_index.regressors | 110, 152, 327 |
| abstract_inverted_index.simulation | 242 |
| abstract_inverted_index.translates | 220 |
| abstract_inverted_index.I}}/M_{*})} | 99 |
| abstract_inverted_index.algorithms, | 239 |
| abstract_inverted_index.classifiers | 83, 186 |
| abstract_inverted_index.considering | 188 |
| abstract_inverted_index.observation | 76, 305 |
| abstract_inverted_index.performance | 126, 142, 165 |
| abstract_inverted_index.predictions | 73 |
| abstract_inverted_index.properties. | 21 |
| abstract_inverted_index.simulation. | 43 |
| abstract_inverted_index.specificity | 137, 277 |
| abstract_inverted_index.classifiers, | 145, 323 |
| abstract_inverted_index.cosmological | 41 |
| abstract_inverted_index.hydrodynamic | 42 |
| abstract_inverted_index.environmental | 20 |
| abstract_inverted_index.Interestingly, | 255 |
| abstract_inverted_index.classification | 245 |
| abstract_inverted_index.{log(M_{H{\small | 98 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5038445526 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I4210116079, https://openalex.org/I869660684 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.65708972 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |