Classifying stages in the gonotrophic cycle of mosquitoes from images using computer vision techniques Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-3191730/v1
The ability to distinguish between the abdominal conditions of adult female mosquitoes has important utility for the surveillance and control of mosquito-borne diseases. However, doing so requires entomological training and time-consuming manual effort. Here, we design computer vision techniques to determine stages in the gonotrophic cycle of female mosquitoes from images. Our dataset was collected from 139 adult female mosquitoes across three medically important species – Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus – and all four gonotrophic stages of the cycle (unfed, fully fed, semi-gravid and gravid). From these mosquitoes and stages, a total of 1,959 images were captured on a plain background via multiple smartphones. We then trained and validated an EfficientNet-B0-based model. With unseen data, the overall classification accuracy achieved by the model was 93.59%. Furthermore, we also assessed the explainability of our AI model, by implementing Grad-CAMs - a technique that highlights pixels in an image that were prioritized for classification. We observe that the highest significance was for those pixels representing the mosquito abdomen, demonstrating that our AI model has indeed learned correctly. To the best of our knowledge, this work is the first to use computer vision techniques to identify the stages of the gonotrophic cycle of mosquitoes, and we discuss some potential practical applications of our techniques.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-3191730/v1
- https://www.researchsquare.com/article/rs-3191730/latest.pdf
- OA Status
- green
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385460100
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385460100Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-3191730/v1Digital Object Identifier
- Title
-
Classifying stages in the gonotrophic cycle of mosquitoes from images using computer vision techniquesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-01Full publication date if available
- Authors
-
Farhat Binte Azam, Ryan M. Carney, Sherzod Kariev, Krishnamoorthy Nallan, Muthukumaravel Subramanian, Gopalakrishnan Sampath, Ashwani Kumar, Sriram ChellappanList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-3191730/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-3191730/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-3191730/latest.pdfDirect OA link when available
- Concepts
-
Anopheles stephensi, Aedes aegypti, Artificial intelligence, Culex quinquefasciatus, Pixel, Computer vision, Computer science, Biology, Machine learning, Pattern recognition (psychology), Ecology, LarvaTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385460100 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-3191730/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-3191730/v1 |
| ids.openalex | https://openalex.org/W4385460100 |
| fwci | 0.0 |
| type | preprint |
| title | Classifying stages in the gonotrophic cycle of mosquitoes from images using computer vision techniques |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10166 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2739 |
| topics[0].subfield.display_name | Public Health, Environmental and Occupational Health |
| topics[0].display_name | Mosquito-borne diseases and control |
| topics[1].id | https://openalex.org/T14053 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9822999835014343 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3312 |
| topics[1].subfield.display_name | Sociology and Political Science |
| topics[1].display_name | Dengue and Mosquito Control Research |
| topics[2].id | https://openalex.org/T10091 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.98089998960495 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2739 |
| topics[2].subfield.display_name | Public Health, Environmental and Occupational Health |
| topics[2].display_name | Malaria Research and Control |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780478335 |
| concepts[0].level | 4 |
| concepts[0].score | 0.8815639019012451 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4115863 |
| concepts[0].display_name | Anopheles stephensi |
| concepts[1].id | https://openalex.org/C2777775583 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7522025108337402 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1148004 |
| concepts[1].display_name | Aedes aegypti |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6318301558494568 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2776217558 |
| concepts[3].level | 4 |
| concepts[3].score | 0.6206341981887817 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3007100 |
| concepts[3].display_name | Culex quinquefasciatus |
| concepts[4].id | https://openalex.org/C160633673 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6047064661979675 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[4].display_name | Pixel |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.47030800580978394 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.46185314655303955 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C86803240 |
| concepts[7].level | 0 |
| concepts[7].score | 0.4125172197818756 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[7].display_name | Biology |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.34600743651390076 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.34095239639282227 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C18903297 |
| concepts[10].level | 1 |
| concepts[10].score | 0.20703288912773132 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[10].display_name | Ecology |
| concepts[11].id | https://openalex.org/C173758957 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0933801531791687 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q129270 |
| concepts[11].display_name | Larva |
| keywords[0].id | https://openalex.org/keywords/anopheles-stephensi |
| keywords[0].score | 0.8815639019012451 |
| keywords[0].display_name | Anopheles stephensi |
| keywords[1].id | https://openalex.org/keywords/aedes-aegypti |
| keywords[1].score | 0.7522025108337402 |
| keywords[1].display_name | Aedes aegypti |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6318301558494568 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/culex-quinquefasciatus |
| keywords[3].score | 0.6206341981887817 |
| keywords[3].display_name | Culex quinquefasciatus |
| keywords[4].id | https://openalex.org/keywords/pixel |
| keywords[4].score | 0.6047064661979675 |
| keywords[4].display_name | Pixel |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.47030800580978394 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.46185314655303955 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/biology |
| keywords[7].score | 0.4125172197818756 |
| keywords[7].display_name | Biology |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.34600743651390076 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.34095239639282227 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/ecology |
| keywords[10].score | 0.20703288912773132 |
| keywords[10].display_name | Ecology |
| keywords[11].id | https://openalex.org/keywords/larva |
| keywords[11].score | 0.0933801531791687 |
| keywords[11].display_name | Larva |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-3191730/v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402450 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research Square (Research Square) |
| locations[0].source.host_organization | https://openalex.org/I4210096694 |
| locations[0].source.host_organization_name | Research Square (United States) |
| locations[0].source.host_organization_lineage | https://openalex.org/I4210096694 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-3191730/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-3191730/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5070845805 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0349-9703 |
| authorships[0].author.display_name | Farhat Binte Azam |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2613432 |
| authorships[0].affiliations[0].raw_affiliation_string | Dept. of Computer Science and Engineering, University of South Florida, Tampa, FL 33620, USA |
| authorships[0].institutions[0].id | https://openalex.org/I2613432 |
| authorships[0].institutions[0].ror | https://ror.org/032db5x82 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I2613432 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of South Florida |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Farhat Binte Azam |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Dept. of Computer Science and Engineering, University of South Florida, Tampa, FL 33620, USA |
| authorships[1].author.id | https://openalex.org/A5070009809 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5537-5366 |
| authorships[1].author.display_name | Ryan M. Carney |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2613432 |
| authorships[1].affiliations[0].raw_affiliation_string | Dept. of Integrative Biology, University of South Florida, Tampa, FL 33620, USA |
| authorships[1].institutions[0].id | https://openalex.org/I2613432 |
| authorships[1].institutions[0].ror | https://ror.org/032db5x82 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I2613432 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of South Florida |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ryan M. Carney |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Dept. of Integrative Biology, University of South Florida, Tampa, FL 33620, USA |
| authorships[2].author.id | https://openalex.org/A5037555696 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Sherzod Kariev |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2613432 |
| authorships[2].affiliations[0].raw_affiliation_string | Dept. of Computer Science and Engineering, University of South Florida, Tampa, FL 33620, USA |
| authorships[2].institutions[0].id | https://openalex.org/I2613432 |
| authorships[2].institutions[0].ror | https://ror.org/032db5x82 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I2613432 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of South Florida |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sherzod Kariev |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Dept. of Computer Science and Engineering, University of South Florida, Tampa, FL 33620, USA |
| authorships[3].author.id | https://openalex.org/A5041998499 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6612-4645 |
| authorships[3].author.display_name | Krishnamoorthy Nallan |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210144797 |
| authorships[3].affiliations[0].raw_affiliation_string | ICMR-Vector Control Research Centre, Field Unit, Madurai 625002, India |
| authorships[3].institutions[0].id | https://openalex.org/I4210144797 |
| authorships[3].institutions[0].ror | https://ror.org/04ds2ap82 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I37048141, https://openalex.org/I4210144797 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Vector Control Research Centre |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Krishnamoorthy Nallan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | ICMR-Vector Control Research Centre, Field Unit, Madurai 625002, India |
| authorships[4].author.id | https://openalex.org/A5109543451 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5964-1596 |
| authorships[4].author.display_name | Muthukumaravel Subramanian |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210144797 |
| authorships[4].affiliations[0].raw_affiliation_string | ICMR-Vector Control Research Centre, Puducherry 605602, India |
| authorships[4].institutions[0].id | https://openalex.org/I4210144797 |
| authorships[4].institutions[0].ror | https://ror.org/04ds2ap82 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I37048141, https://openalex.org/I4210144797 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Vector Control Research Centre |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Muthukumaravel Subramanian |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | ICMR-Vector Control Research Centre, Puducherry 605602, India |
| authorships[5].author.id | https://openalex.org/A5111508894 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Gopalakrishnan Sampath |
| authorships[5].countries | IN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210144797 |
| authorships[5].affiliations[0].raw_affiliation_string | ICMR-Vector Control Research Centre, Puducherry 605602, India |
| authorships[5].institutions[0].id | https://openalex.org/I4210144797 |
| authorships[5].institutions[0].ror | https://ror.org/04ds2ap82 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I37048141, https://openalex.org/I4210144797 |
| authorships[5].institutions[0].country_code | IN |
| authorships[5].institutions[0].display_name | Vector Control Research Centre |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Gopalakrishnan Sampath |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | ICMR-Vector Control Research Centre, Puducherry 605602, India |
| authorships[6].author.id | https://openalex.org/A5071993812 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2485-7581 |
| authorships[6].author.display_name | Ashwani Kumar |
| authorships[6].countries | IN, US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I2613432 |
| authorships[6].affiliations[0].raw_affiliation_string | University of South Florida Sherzod Kariev University of South Florida |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I2613432 |
| authorships[6].affiliations[1].raw_affiliation_string | University of South Florida |
| authorships[6].affiliations[2].institution_ids | https://openalex.org/I4210144797 |
| authorships[6].affiliations[2].raw_affiliation_string | ICMR-Vector Control Research Centre |
| authorships[6].affiliations[3].institution_ids | https://openalex.org/I4210144797 |
| authorships[6].affiliations[3].raw_affiliation_string | ICMR-Vector Control Research Centre, Field Unit |
| authorships[6].institutions[0].id | https://openalex.org/I4210144797 |
| authorships[6].institutions[0].ror | https://ror.org/04ds2ap82 |
| authorships[6].institutions[0].type | facility |
| authorships[6].institutions[0].lineage | https://openalex.org/I37048141, https://openalex.org/I4210144797 |
| authorships[6].institutions[0].country_code | IN |
| authorships[6].institutions[0].display_name | Vector Control Research Centre |
| authorships[6].institutions[1].id | https://openalex.org/I2613432 |
| authorships[6].institutions[1].ror | https://ror.org/032db5x82 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I2613432 |
| authorships[6].institutions[1].country_code | US |
| authorships[6].institutions[1].display_name | University of South Florida |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Ashwani Kumar |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | ICMR-Vector Control Research Centre, ICMR-Vector Control Research Centre, Field Unit, University of South Florida, University of South Florida Sherzod Kariev University of South Florida |
| authorships[7].author.id | https://openalex.org/A5030081020 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-5330-8549 |
| authorships[7].author.display_name | Sriram Chellappan |
| authorships[7].countries | IN, US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210144797 |
| authorships[7].affiliations[0].raw_affiliation_string | ICMR-Vector Control Research Centre, Puducherry 605602, India |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I2613432 |
| authorships[7].affiliations[1].raw_affiliation_string | Dept. of Computer Science and Engineering, University of South Florida, Tampa, FL 33620, USA |
| authorships[7].institutions[0].id | https://openalex.org/I4210144797 |
| authorships[7].institutions[0].ror | https://ror.org/04ds2ap82 |
| authorships[7].institutions[0].type | facility |
| authorships[7].institutions[0].lineage | https://openalex.org/I37048141, https://openalex.org/I4210144797 |
| authorships[7].institutions[0].country_code | IN |
| authorships[7].institutions[0].display_name | Vector Control Research Centre |
| authorships[7].institutions[1].id | https://openalex.org/I2613432 |
| authorships[7].institutions[1].ror | https://ror.org/032db5x82 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I2613432 |
| authorships[7].institutions[1].country_code | US |
| authorships[7].institutions[1].display_name | University of South Florida |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Sriram Chellappan |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Dept. of Computer Science and Engineering, University of South Florida, Tampa, FL 33620, USA, ICMR-Vector Control Research Centre, Puducherry 605602, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-3191730/latest.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Classifying stages in the gonotrophic cycle of mosquitoes from images using computer vision techniques |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10166 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2739 |
| primary_topic.subfield.display_name | Public Health, Environmental and Occupational Health |
| primary_topic.display_name | Mosquito-borne diseases and control |
| related_works | https://openalex.org/W2026561945, https://openalex.org/W4236518759, https://openalex.org/W2733561874, https://openalex.org/W1974157743, https://openalex.org/W1975945444, https://openalex.org/W2060922475, https://openalex.org/W2579322272, https://openalex.org/W1990200945, https://openalex.org/W264842922, https://openalex.org/W3015605915 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-3191730/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402450 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Square (Research Square) |
| best_oa_location.source.host_organization | https://openalex.org/I4210096694 |
| best_oa_location.source.host_organization_name | Research Square (United States) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-3191730/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-3191730/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-3191730/v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402450 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research Square (Research Square) |
| primary_location.source.host_organization | https://openalex.org/I4210096694 |
| primary_location.source.host_organization_name | Research Square (United States) |
| primary_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-3191730/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-3191730/v1 |
| publication_date | 2023-08-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4283169308, https://openalex.org/W2027274881, https://openalex.org/W2962858109, https://openalex.org/W2124298027, https://openalex.org/W4288450201, https://openalex.org/W6676297131, https://openalex.org/W2912290085, https://openalex.org/W2896842408, https://openalex.org/W4213431065, https://openalex.org/W3175995352, https://openalex.org/W3134561445, https://openalex.org/W4234552385, https://openalex.org/W3028113047, https://openalex.org/W2963037989, https://openalex.org/W2322354187, https://openalex.org/W2187089797, https://openalex.org/W2241768918, https://openalex.org/W1987053612, https://openalex.org/W2127842626, https://openalex.org/W4239072543, https://openalex.org/W3039787549, https://openalex.org/W2955425717, https://openalex.org/W4293584584, https://openalex.org/W1965555277 |
| referenced_works_count | 24 |
| abstract_inverted_index.- | 142 |
| abstract_inverted_index.a | 94, 102, 143 |
| abstract_inverted_index.AI | 137, 173 |
| abstract_inverted_index.To | 179 |
| abstract_inverted_index.We | 108, 156 |
| abstract_inverted_index.an | 113, 149 |
| abstract_inverted_index.by | 124, 139 |
| abstract_inverted_index.in | 43, 148 |
| abstract_inverted_index.is | 187 |
| abstract_inverted_index.of | 9, 21, 47, 80, 96, 135, 182, 199, 203, 212 |
| abstract_inverted_index.on | 101 |
| abstract_inverted_index.so | 26 |
| abstract_inverted_index.to | 3, 40, 190, 195 |
| abstract_inverted_index.we | 35, 130, 206 |
| abstract_inverted_index.139 | 57 |
| abstract_inverted_index.Our | 52 |
| abstract_inverted_index.The | 1 |
| abstract_inverted_index.all | 76 |
| abstract_inverted_index.and | 19, 30, 71, 75, 87, 92, 111, 205 |
| abstract_inverted_index.for | 16, 154, 163 |
| abstract_inverted_index.has | 13, 175 |
| abstract_inverted_index.our | 136, 172, 183, 213 |
| abstract_inverted_index.the | 6, 17, 44, 81, 119, 125, 133, 159, 167, 180, 188, 197, 200 |
| abstract_inverted_index.use | 191 |
| abstract_inverted_index.via | 105 |
| abstract_inverted_index.was | 54, 127, 162 |
| abstract_inverted_index.– | 66, 74 |
| abstract_inverted_index.From | 89 |
| abstract_inverted_index.With | 116 |
| abstract_inverted_index.also | 131 |
| abstract_inverted_index.best | 181 |
| abstract_inverted_index.fed, | 85 |
| abstract_inverted_index.four | 77 |
| abstract_inverted_index.from | 50, 56 |
| abstract_inverted_index.some | 208 |
| abstract_inverted_index.that | 145, 151, 158, 171 |
| abstract_inverted_index.then | 109 |
| abstract_inverted_index.this | 185 |
| abstract_inverted_index.were | 99, 152 |
| abstract_inverted_index.work | 186 |
| abstract_inverted_index.1,959 | 97 |
| abstract_inverted_index.Aedes | 67 |
| abstract_inverted_index.Culex | 72 |
| abstract_inverted_index.Here, | 34 |
| abstract_inverted_index.adult | 10, 58 |
| abstract_inverted_index.cycle | 46, 82, 202 |
| abstract_inverted_index.data, | 118 |
| abstract_inverted_index.doing | 25 |
| abstract_inverted_index.first | 189 |
| abstract_inverted_index.fully | 84 |
| abstract_inverted_index.image | 150 |
| abstract_inverted_index.model | 126, 174 |
| abstract_inverted_index.plain | 103 |
| abstract_inverted_index.these | 90 |
| abstract_inverted_index.those | 164 |
| abstract_inverted_index.three | 62 |
| abstract_inverted_index.total | 95 |
| abstract_inverted_index.across | 61 |
| abstract_inverted_index.design | 36 |
| abstract_inverted_index.female | 11, 48, 59 |
| abstract_inverted_index.images | 98 |
| abstract_inverted_index.indeed | 176 |
| abstract_inverted_index.manual | 32 |
| abstract_inverted_index.model, | 138 |
| abstract_inverted_index.model. | 115 |
| abstract_inverted_index.pixels | 147, 165 |
| abstract_inverted_index.stages | 42, 79, 198 |
| abstract_inverted_index.unseen | 117 |
| abstract_inverted_index.vision | 38, 193 |
| abstract_inverted_index.(unfed, | 83 |
| abstract_inverted_index.93.59%. | 128 |
| abstract_inverted_index.ability | 2 |
| abstract_inverted_index.between | 5 |
| abstract_inverted_index.control | 20 |
| abstract_inverted_index.dataset | 53 |
| abstract_inverted_index.discuss | 207 |
| abstract_inverted_index.effort. | 33 |
| abstract_inverted_index.highest | 160 |
| abstract_inverted_index.images. | 51 |
| abstract_inverted_index.learned | 177 |
| abstract_inverted_index.observe | 157 |
| abstract_inverted_index.overall | 120 |
| abstract_inverted_index.species | 65 |
| abstract_inverted_index.stages, | 93 |
| abstract_inverted_index.trained | 110 |
| abstract_inverted_index.utility | 15 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 24 |
| abstract_inverted_index.abdomen, | 169 |
| abstract_inverted_index.accuracy | 122 |
| abstract_inverted_index.achieved | 123 |
| abstract_inverted_index.aegypti, | 68 |
| abstract_inverted_index.assessed | 132 |
| abstract_inverted_index.captured | 100 |
| abstract_inverted_index.computer | 37, 192 |
| abstract_inverted_index.gravid). | 88 |
| abstract_inverted_index.identify | 196 |
| abstract_inverted_index.mosquito | 168 |
| abstract_inverted_index.multiple | 106 |
| abstract_inverted_index.requires | 27 |
| abstract_inverted_index.training | 29 |
| abstract_inverted_index.Anopheles | 69 |
| abstract_inverted_index.Grad-CAMs | 141 |
| abstract_inverted_index.abdominal | 7 |
| abstract_inverted_index.collected | 55 |
| abstract_inverted_index.determine | 41 |
| abstract_inverted_index.diseases. | 23 |
| abstract_inverted_index.important | 14, 64 |
| abstract_inverted_index.medically | 63 |
| abstract_inverted_index.potential | 209 |
| abstract_inverted_index.practical | 210 |
| abstract_inverted_index.technique | 144 |
| abstract_inverted_index.validated | 112 |
| abstract_inverted_index.background | 104 |
| abstract_inverted_index.conditions | 8 |
| abstract_inverted_index.correctly. | 178 |
| abstract_inverted_index.highlights | 146 |
| abstract_inverted_index.knowledge, | 184 |
| abstract_inverted_index.mosquitoes | 12, 49, 60, 91 |
| abstract_inverted_index.stephensi, | 70 |
| abstract_inverted_index.techniques | 39, 194 |
| abstract_inverted_index.distinguish | 4 |
| abstract_inverted_index.gonotrophic | 45, 78, 201 |
| abstract_inverted_index.mosquitoes, | 204 |
| abstract_inverted_index.prioritized | 153 |
| abstract_inverted_index.semi-gravid | 86 |
| abstract_inverted_index.techniques. | 214 |
| abstract_inverted_index.Furthermore, | 129 |
| abstract_inverted_index.applications | 211 |
| abstract_inverted_index.implementing | 140 |
| abstract_inverted_index.representing | 166 |
| abstract_inverted_index.significance | 161 |
| abstract_inverted_index.smartphones. | 107 |
| abstract_inverted_index.surveillance | 18 |
| abstract_inverted_index.demonstrating | 170 |
| abstract_inverted_index.entomological | 28 |
| abstract_inverted_index.classification | 121 |
| abstract_inverted_index.explainability | 134 |
| abstract_inverted_index.mosquito-borne | 22 |
| abstract_inverted_index.time-consuming | 31 |
| abstract_inverted_index.classification. | 155 |
| abstract_inverted_index.quinquefasciatus | 73 |
| abstract_inverted_index.EfficientNet-B0-based | 114 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.18823906 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |