Climate model selection via conformal clustering of spatial functional data Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1007/s10651-024-00616-8
Climate model selection stands as a critical process in climate science and research. It involves choosing the most appropriate climate models to address specific research questions, simulating climate behaviour, or making projections about future climate conditions. This paper proposes a new approach, using spatial functional data analysis, to asses which of the 18 EURO CORDEX simulation models work better for predicting average temperatures in the Campania region (Italy). The method involves two key steps: first, using functional data analysis to process climate variables and select optimal models by a hierarchical clustering procedure; second, validating the chosen models by proposing a new conformal prediction approach to the anomalies associated to each cluster.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s10651-024-00616-8
- https://link.springer.com/content/pdf/10.1007/s10651-024-00616-8.pdf
- OA Status
- hybrid
- Cited By
- 3
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396831529
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396831529Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s10651-024-00616-8Digital Object Identifier
- Title
-
Climate model selection via conformal clustering of spatial functional dataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-11Full publication date if available
- Authors
-
Veronica Villani, Elvira Romano, Jorge MateuList of authors in order
- Landing page
-
https://doi.org/10.1007/s10651-024-00616-8Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s10651-024-00616-8.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s10651-024-00616-8.pdfDirect OA link when available
- Concepts
-
Cluster analysis, Selection (genetic algorithm), Model selection, Conformal map, Computer science, Spatial analysis, Mathematics, Data mining, Statistics, Artificial intelligence, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396831529 |
|---|---|
| doi | https://doi.org/10.1007/s10651-024-00616-8 |
| ids.doi | https://doi.org/10.1007/s10651-024-00616-8 |
| ids.openalex | https://openalex.org/W4396831529 |
| fwci | 2.99902742 |
| type | article |
| title | Climate model selection via conformal clustering of spatial functional data |
| biblio.issue | 2 |
| biblio.volume | 31 |
| biblio.last_page | 385 |
| biblio.first_page | 365 |
| topics[0].id | https://openalex.org/T11911 |
| topics[0].field.id | https://openalex.org/fields/20 |
| topics[0].field.display_name | Economics, Econometrics and Finance |
| topics[0].score | 0.9760000109672546 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2002 |
| topics[0].subfield.display_name | Economics and Econometrics |
| topics[0].display_name | Spatial and Panel Data Analysis |
| topics[1].id | https://openalex.org/T11588 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9455000162124634 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Atmospheric and Environmental Gas Dynamics |
| topics[2].id | https://openalex.org/T10029 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9121999740600586 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2306 |
| topics[2].subfield.display_name | Global and Planetary Change |
| topics[2].display_name | Climate variability and models |
| funders[0].id | https://openalex.org/F4320325777 |
| funders[0].ror | |
| funders[0].display_name | Università degli Studi della Campania Luigi Vanvitelli |
| is_xpac | False |
| apc_list.value | 2290 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2890 |
| apc_paid.value | 2290 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2890 |
| concepts[0].id | https://openalex.org/C73555534 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6254291534423828 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[0].display_name | Cluster analysis |
| concepts[1].id | https://openalex.org/C81917197 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5938572287559509 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[1].display_name | Selection (genetic algorithm) |
| concepts[2].id | https://openalex.org/C93959086 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5810433030128479 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6888345 |
| concepts[2].display_name | Model selection |
| concepts[3].id | https://openalex.org/C98214594 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5435190200805664 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q850275 |
| concepts[3].display_name | Conformal map |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4455224871635437 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C159620131 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4124522805213928 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1938983 |
| concepts[5].display_name | Spatial analysis |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.38519126176834106 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.35105401277542114 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3281697928905487 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.2373814880847931 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C134306372 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[10].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/cluster-analysis |
| keywords[0].score | 0.6254291534423828 |
| keywords[0].display_name | Cluster analysis |
| keywords[1].id | https://openalex.org/keywords/selection |
| keywords[1].score | 0.5938572287559509 |
| keywords[1].display_name | Selection (genetic algorithm) |
| keywords[2].id | https://openalex.org/keywords/model-selection |
| keywords[2].score | 0.5810433030128479 |
| keywords[2].display_name | Model selection |
| keywords[3].id | https://openalex.org/keywords/conformal-map |
| keywords[3].score | 0.5435190200805664 |
| keywords[3].display_name | Conformal map |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4455224871635437 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/spatial-analysis |
| keywords[5].score | 0.4124522805213928 |
| keywords[5].display_name | Spatial analysis |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.38519126176834106 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.35105401277542114 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.3281697928905487 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.2373814880847931 |
| keywords[9].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1007/s10651-024-00616-8 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43170165 |
| locations[0].source.issn | 1352-8505, 1573-3009 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1352-8505 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Environmental and Ecological Statistics |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s10651-024-00616-8.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Environmental and Ecological Statistics |
| locations[0].landing_page_url | https://doi.org/10.1007/s10651-024-00616-8 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5023631814 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8134-8804 |
| authorships[0].author.display_name | Veronica Villani |
| authorships[0].countries | IT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I197809005 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mathematics and Physics, University of Campania Luigi Vanvitelli, 81100, Caserta, Italy |
| authorships[0].institutions[0].id | https://openalex.org/I197809005 |
| authorships[0].institutions[0].ror | https://ror.org/02kqnpp86 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I197809005 |
| authorships[0].institutions[0].country_code | IT |
| authorships[0].institutions[0].display_name | University of Campania "Luigi Vanvitelli" |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Veronica Villani |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Mathematics and Physics, University of Campania Luigi Vanvitelli, 81100, Caserta, Italy |
| authorships[1].author.id | https://openalex.org/A5089561475 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8998-7099 |
| authorships[1].author.display_name | Elvira Romano |
| authorships[1].countries | IT |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I197809005 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Mathematics and Physics, University of Campania Luigi Vanvitelli, 81100, Caserta, Italy |
| authorships[1].institutions[0].id | https://openalex.org/I197809005 |
| authorships[1].institutions[0].ror | https://ror.org/02kqnpp86 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I197809005 |
| authorships[1].institutions[0].country_code | IT |
| authorships[1].institutions[0].display_name | University of Campania "Luigi Vanvitelli" |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Elvira Romano |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Mathematics and Physics, University of Campania Luigi Vanvitelli, 81100, Caserta, Italy |
| authorships[2].author.id | https://openalex.org/A5103185957 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2868-7604 |
| authorships[2].author.display_name | Jorge Mateu |
| authorships[2].countries | ES |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I10902133 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Mathematics, Universitat Jaume I, 12071, Castellón, Spain |
| authorships[2].institutions[0].id | https://openalex.org/I10902133 |
| authorships[2].institutions[0].ror | https://ror.org/02ws1xc11 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I10902133 |
| authorships[2].institutions[0].country_code | ES |
| authorships[2].institutions[0].display_name | Universitat Jaume I |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Jorge Mateu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Mathematics, Universitat Jaume I, 12071, Castellón, Spain |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s10651-024-00616-8.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Climate model selection via conformal clustering of spatial functional data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11911 |
| primary_topic.field.id | https://openalex.org/fields/20 |
| primary_topic.field.display_name | Economics, Econometrics and Finance |
| primary_topic.score | 0.9760000109672546 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2002 |
| primary_topic.subfield.display_name | Economics and Econometrics |
| primary_topic.display_name | Spatial and Panel Data Analysis |
| related_works | https://openalex.org/W1971223889, https://openalex.org/W4298130764, https://openalex.org/W2173406670, https://openalex.org/W2804364458, https://openalex.org/W2132641928, https://openalex.org/W4310225030, https://openalex.org/W2090259340, https://openalex.org/W2085963144, https://openalex.org/W2393816671, https://openalex.org/W4381571012 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s10651-024-00616-8 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43170165 |
| best_oa_location.source.issn | 1352-8505, 1573-3009 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1352-8505 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Environmental and Ecological Statistics |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s10651-024-00616-8.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Environmental and Ecological Statistics |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s10651-024-00616-8 |
| primary_location.id | doi:10.1007/s10651-024-00616-8 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43170165 |
| primary_location.source.issn | 1352-8505, 1573-3009 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1352-8505 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Environmental and Ecological Statistics |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s10651-024-00616-8.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Environmental and Ecological Statistics |
| primary_location.landing_page_url | https://doi.org/10.1007/s10651-024-00616-8 |
| publication_date | 2024-05-11 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2095439837, https://openalex.org/W2355194096, https://openalex.org/W2019097137, https://openalex.org/W1994293139, https://openalex.org/W2735712325, https://openalex.org/W2164560799, https://openalex.org/W2063680034, https://openalex.org/W2887293259, https://openalex.org/W2003390846, https://openalex.org/W4385686763, https://openalex.org/W3209308057, https://openalex.org/W3025031475, https://openalex.org/W1996478169, https://openalex.org/W2170816806, https://openalex.org/W2164517326, https://openalex.org/W3017645179, https://openalex.org/W1968176769, https://openalex.org/W2149900683, https://openalex.org/W1990621008, https://openalex.org/W1681521146, https://openalex.org/W2556997463, https://openalex.org/W2054653365, https://openalex.org/W2051337026, https://openalex.org/W1996819337, https://openalex.org/W2990229938, https://openalex.org/W2031784019, https://openalex.org/W4292156489, https://openalex.org/W2069294836, https://openalex.org/W2171964967, https://openalex.org/W2138661036, https://openalex.org/W2186355904, https://openalex.org/W2071949631, https://openalex.org/W2069079992, https://openalex.org/W2087515346, https://openalex.org/W4317831475, https://openalex.org/W3104366820, https://openalex.org/W4200620757 |
| referenced_works_count | 37 |
| abstract_inverted_index.a | 6, 40, 89, 100 |
| abstract_inverted_index.18 | 53 |
| abstract_inverted_index.It | 14 |
| abstract_inverted_index.as | 5 |
| abstract_inverted_index.by | 88, 98 |
| abstract_inverted_index.in | 9, 64 |
| abstract_inverted_index.of | 51 |
| abstract_inverted_index.or | 30 |
| abstract_inverted_index.to | 22, 48, 80, 105, 109 |
| abstract_inverted_index.The | 69 |
| abstract_inverted_index.and | 12, 84 |
| abstract_inverted_index.for | 60 |
| abstract_inverted_index.key | 73 |
| abstract_inverted_index.new | 41, 101 |
| abstract_inverted_index.the | 17, 52, 65, 95, 106 |
| abstract_inverted_index.two | 72 |
| abstract_inverted_index.EURO | 54 |
| abstract_inverted_index.This | 37 |
| abstract_inverted_index.data | 46, 78 |
| abstract_inverted_index.each | 110 |
| abstract_inverted_index.most | 18 |
| abstract_inverted_index.work | 58 |
| abstract_inverted_index.about | 33 |
| abstract_inverted_index.asses | 49 |
| abstract_inverted_index.model | 2 |
| abstract_inverted_index.paper | 38 |
| abstract_inverted_index.using | 43, 76 |
| abstract_inverted_index.which | 50 |
| abstract_inverted_index.CORDEX | 55 |
| abstract_inverted_index.better | 59 |
| abstract_inverted_index.chosen | 96 |
| abstract_inverted_index.first, | 75 |
| abstract_inverted_index.future | 34 |
| abstract_inverted_index.making | 31 |
| abstract_inverted_index.method | 70 |
| abstract_inverted_index.models | 21, 57, 87, 97 |
| abstract_inverted_index.region | 67 |
| abstract_inverted_index.select | 85 |
| abstract_inverted_index.stands | 4 |
| abstract_inverted_index.steps: | 74 |
| abstract_inverted_index.Climate | 1 |
| abstract_inverted_index.address | 23 |
| abstract_inverted_index.average | 62 |
| abstract_inverted_index.climate | 10, 20, 28, 35, 82 |
| abstract_inverted_index.optimal | 86 |
| abstract_inverted_index.process | 8, 81 |
| abstract_inverted_index.science | 11 |
| abstract_inverted_index.second, | 93 |
| abstract_inverted_index.spatial | 44 |
| abstract_inverted_index.(Italy). | 68 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Campania | 66 |
| abstract_inverted_index.analysis | 79 |
| abstract_inverted_index.approach | 104 |
| abstract_inverted_index.choosing | 16 |
| abstract_inverted_index.cluster. | 111 |
| abstract_inverted_index.critical | 7 |
| abstract_inverted_index.involves | 15, 71 |
| abstract_inverted_index.proposes | 39 |
| abstract_inverted_index.research | 25 |
| abstract_inverted_index.specific | 24 |
| abstract_inverted_index.analysis, | 47 |
| abstract_inverted_index.anomalies | 107 |
| abstract_inverted_index.approach, | 42 |
| abstract_inverted_index.conformal | 102 |
| abstract_inverted_index.proposing | 99 |
| abstract_inverted_index.research. | 13 |
| abstract_inverted_index.selection | 3 |
| abstract_inverted_index.variables | 83 |
| abstract_inverted_index.associated | 108 |
| abstract_inverted_index.behaviour, | 29 |
| abstract_inverted_index.clustering | 91 |
| abstract_inverted_index.functional | 45, 77 |
| abstract_inverted_index.predicting | 61 |
| abstract_inverted_index.prediction | 103 |
| abstract_inverted_index.procedure; | 92 |
| abstract_inverted_index.questions, | 26 |
| abstract_inverted_index.simulating | 27 |
| abstract_inverted_index.simulation | 56 |
| abstract_inverted_index.validating | 94 |
| abstract_inverted_index.appropriate | 19 |
| abstract_inverted_index.conditions. | 36 |
| abstract_inverted_index.projections | 32 |
| abstract_inverted_index.hierarchical | 90 |
| abstract_inverted_index.temperatures | 63 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.8600000143051147 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.92793464 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |