CLPM: A Hybrid Network With Cross-Space Learning and Perception-Driven Mechanism for Long-Tailed Remote Sensing Image Classification Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/jstars.2025.3575292
Long-tailed distribution is a common issue in remote sensing image classification (RSIC), and many datasets suffer from severe class imbalance. This imbalance often causes the classifier to focus on the head classes with more samples, neglecting the tail classes. As a result, the precision of the tail classes is reduced, which in turn affects the generalization ability of the classifier. To address this problem, a hybrid network based on cross-space learning and perception-driven mechanism (CLPM) is proposed to improve the classification accuracy of samples from the tail classes. The CLPM network consists of three components. The cross-space representation learning branch is designed to enhance the representation capability of tail-class samples by integrating multiscale and multiregion spatial features. In parallel, the adaptive perception classification branch dynamically adjusts the receptive fields to improve generalization across different resolutions and challenging scenarios. In addition, the CLPM innovatively applies the von Mises-Fisher (vMF) distribution to remote sensing images for high-dimensional interclass feature modeling. Building on this, a vMF-based contrastive loss function is proposed. This approach effectively coordinates the learning processes of head and tail classes while enhancing the precision of feature representation. The effectiveness of CLPM is validated on datasets with varying balance ratios, including SIRI-WHU, CLRS, and NWPU-RESISC45. Results show that CLPM significantly improves tail classes accuracy while maintaining high recognition rates for head and middle classes. Compared with the existing methods, CLPM has significant advantages in the overall recognition accuracy, the long-tailed problem, and diversity adaptation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/jstars.2025.3575292
- OA Status
- gold
- References
- 79
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410950238
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410950238Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/jstars.2025.3575292Digital Object Identifier
- Title
-
CLPM: A Hybrid Network With Cross-Space Learning and Perception-Driven Mechanism for Long-Tailed Remote Sensing Image ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Lei Zhang, Min Jung Kong, Changfeng Jing, Xing XingList of authors in order
- Landing page
-
https://doi.org/10.1109/jstars.2025.3575292Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/jstars.2025.3575292Direct OA link when available
- Concepts
-
Mechanism (biology), Computer science, Perception, Space (punctuation), Artificial intelligence, Remote sensing, Pattern recognition (psychology), Geography, Epistemology, Neuroscience, Operating system, Philosophy, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
79Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410950238 |
|---|---|
| doi | https://doi.org/10.1109/jstars.2025.3575292 |
| ids.doi | https://doi.org/10.1109/jstars.2025.3575292 |
| ids.openalex | https://openalex.org/W4410950238 |
| fwci | 0.0 |
| type | article |
| title | CLPM: A Hybrid Network With Cross-Space Learning and Perception-Driven Mechanism for Long-Tailed Remote Sensing Image Classification |
| biblio.issue | |
| biblio.volume | 18 |
| biblio.last_page | 14290 |
| biblio.first_page | 14272 |
| topics[0].id | https://openalex.org/T10689 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Remote-Sensing Image Classification |
| topics[1].id | https://openalex.org/T11659 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9872000217437744 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Advanced Image Fusion Techniques |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9861999750137329 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list.value | 1250 |
| apc_list.currency | USD |
| apc_list.value_usd | 1250 |
| apc_paid.value | 1250 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1250 |
| concepts[0].id | https://openalex.org/C89611455 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6561250686645508 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6804646 |
| concepts[0].display_name | Mechanism (biology) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6316566467285156 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C26760741 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5811672806739807 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q160402 |
| concepts[2].display_name | Perception |
| concepts[3].id | https://openalex.org/C2778572836 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5276046395301819 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q380933 |
| concepts[3].display_name | Space (punctuation) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4751705527305603 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C62649853 |
| concepts[5].level | 1 |
| concepts[5].score | 0.40096810460090637 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[5].display_name | Remote sensing |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.3309233486652374 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C205649164 |
| concepts[7].level | 0 |
| concepts[7].score | 0.12349957227706909 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[7].display_name | Geography |
| concepts[8].id | https://openalex.org/C111472728 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[8].display_name | Epistemology |
| concepts[9].id | https://openalex.org/C169760540 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[9].display_name | Neuroscience |
| concepts[10].id | https://openalex.org/C111919701 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[10].display_name | Operating system |
| concepts[11].id | https://openalex.org/C138885662 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[11].display_name | Philosophy |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/mechanism |
| keywords[0].score | 0.6561250686645508 |
| keywords[0].display_name | Mechanism (biology) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6316566467285156 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/perception |
| keywords[2].score | 0.5811672806739807 |
| keywords[2].display_name | Perception |
| keywords[3].id | https://openalex.org/keywords/space |
| keywords[3].score | 0.5276046395301819 |
| keywords[3].display_name | Space (punctuation) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.4751705527305603 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/remote-sensing |
| keywords[5].score | 0.40096810460090637 |
| keywords[5].display_name | Remote sensing |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.3309233486652374 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/geography |
| keywords[7].score | 0.12349957227706909 |
| keywords[7].display_name | Geography |
| language | en |
| locations[0].id | doi:10.1109/jstars.2025.3575292 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S117727964 |
| locations[0].source.issn | 1939-1404, 2151-1535 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1939-1404 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.1109/jstars.2025.3575292 |
| locations[1].id | pmh:oai:doaj.org/article:6d8ceaa3ea0a49479f37ef77a1f11541 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 18, Pp 14272-14290 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/6d8ceaa3ea0a49479f37ef77a1f11541 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5000077347 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6731-822X |
| authorships[0].author.display_name | Lei Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I62853816 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Intelligent Science and Technology, Beijing University of Civil Engineering and Architecture, Beijing, China |
| authorships[0].institutions[0].id | https://openalex.org/I62853816 |
| authorships[0].institutions[0].ror | https://ror.org/02yj0p855 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I62853816 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing University of Civil Engineering and Architecture |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lei Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Intelligent Science and Technology, Beijing University of Civil Engineering and Architecture, Beijing, China |
| authorships[1].author.id | https://openalex.org/A5035465152 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Min Jung Kong |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I62853816 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Intelligent Science and Technology, Beijing University of Civil Engineering and Architecture, Beijing, China |
| authorships[1].institutions[0].id | https://openalex.org/I62853816 |
| authorships[1].institutions[0].ror | https://ror.org/02yj0p855 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I62853816 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing University of Civil Engineering and Architecture |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Min Kong |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Intelligent Science and Technology, Beijing University of Civil Engineering and Architecture, Beijing, China |
| authorships[2].author.id | https://openalex.org/A5009114126 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1270-5353 |
| authorships[2].author.display_name | Changfeng Jing |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I3125743391 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Information Engineering, China University of Geosciences (Beijing), Beijing, China |
| authorships[2].institutions[0].id | https://openalex.org/I3125743391 |
| authorships[2].institutions[0].ror | https://ror.org/04q6c7p66 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I3125743391 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | China University of Geosciences (Beijing) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Changfeng Jing |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Information Engineering, China University of Geosciences (Beijing), Beijing, China |
| authorships[3].author.id | https://openalex.org/A5101516801 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1778-6164 |
| authorships[3].author.display_name | Xing Xing |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I62853816 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Intelligent Science and Technology, Beijing University of Civil Engineering and Architecture, Beijing, China |
| authorships[3].institutions[0].id | https://openalex.org/I62853816 |
| authorships[3].institutions[0].ror | https://ror.org/02yj0p855 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I62853816 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing University of Civil Engineering and Architecture |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Xing Xing |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Intelligent Science and Technology, Beijing University of Civil Engineering and Architecture, Beijing, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/jstars.2025.3575292 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | CLPM: A Hybrid Network With Cross-Space Learning and Perception-Driven Mechanism for Long-Tailed Remote Sensing Image Classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10689 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Remote-Sensing Image Classification |
| related_works | https://openalex.org/W2382997850, https://openalex.org/W2390968135, https://openalex.org/W2382213751, https://openalex.org/W2351750670, https://openalex.org/W1597848696, https://openalex.org/W2354715126, https://openalex.org/W2388563748, https://openalex.org/W2375179084, https://openalex.org/W2366646518, https://openalex.org/W2370906336 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/jstars.2025.3575292 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S117727964 |
| best_oa_location.source.issn | 1939-1404, 2151-1535 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1939-1404 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.1109/jstars.2025.3575292 |
| primary_location.id | doi:10.1109/jstars.2025.3575292 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S117727964 |
| primary_location.source.issn | 1939-1404, 2151-1535 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1939-1404 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.1109/jstars.2025.3575292 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4402643477, https://openalex.org/W4404520625, https://openalex.org/W3022140654, https://openalex.org/W3088162569, https://openalex.org/W3081684346, https://openalex.org/W4401841981, https://openalex.org/W4403443212, https://openalex.org/W2793638091, https://openalex.org/W4319786822, https://openalex.org/W4391579028, https://openalex.org/W4402613259, https://openalex.org/W4402613307, https://openalex.org/W2088889013, https://openalex.org/W4393950954, https://openalex.org/W4366352743, https://openalex.org/W2962749812, https://openalex.org/W4281492582, https://openalex.org/W2074888575, https://openalex.org/W2767106145, https://openalex.org/W2867270703, https://openalex.org/W6760201928, https://openalex.org/W2962876782, https://openalex.org/W3158299003, https://openalex.org/W2954996726, https://openalex.org/W4309605561, https://openalex.org/W2148143831, https://openalex.org/W2963691377, https://openalex.org/W2884561390, https://openalex.org/W4404520710, https://openalex.org/W4312344855, https://openalex.org/W4385577551, https://openalex.org/W2771838132, https://openalex.org/W2899095986, https://openalex.org/W2955547856, https://openalex.org/W3148270135, https://openalex.org/W3200466256, https://openalex.org/W4295832403, https://openalex.org/W2074909897, https://openalex.org/W4310588385, https://openalex.org/W2962984188, https://openalex.org/W3034654297, https://openalex.org/W3204988419, https://openalex.org/W4386913491, https://openalex.org/W3034711780, https://openalex.org/W3096688134, https://openalex.org/W3177230409, https://openalex.org/W4285123352, https://openalex.org/W4318617442, https://openalex.org/W3176307736, https://openalex.org/W3148105697, https://openalex.org/W6682124274, https://openalex.org/W4399731493, https://openalex.org/W4385938120, https://openalex.org/W2994992990, https://openalex.org/W4313827544, https://openalex.org/W4318767332, https://openalex.org/W4392114214, https://openalex.org/W2922509574, https://openalex.org/W6776700526, https://openalex.org/W2283168383, https://openalex.org/W2347115704, https://openalex.org/W3006792692, https://openalex.org/W2592962403, https://openalex.org/W4312244159, https://openalex.org/W4214718285, https://openalex.org/W4377235500, https://openalex.org/W3202232857, https://openalex.org/W6803641788, https://openalex.org/W6764733053, https://openalex.org/W4312986563, https://openalex.org/W4400229943, https://openalex.org/W4390873567, https://openalex.org/W4392122189, https://openalex.org/W6637373629, https://openalex.org/W2097117768, https://openalex.org/W2963163009, https://openalex.org/W2194775991, https://openalex.org/W2145001205, https://openalex.org/W1686810756 |
| referenced_works_count | 79 |
| abstract_inverted_index.a | 3, 40, 64, 161 |
| abstract_inverted_index.As | 39 |
| abstract_inverted_index.In | 117, 138 |
| abstract_inverted_index.To | 60 |
| abstract_inverted_index.by | 110 |
| abstract_inverted_index.in | 6, 51, 232 |
| abstract_inverted_index.is | 2, 48, 75, 100, 166, 191 |
| abstract_inverted_index.of | 44, 57, 82, 92, 107, 175, 184, 189 |
| abstract_inverted_index.on | 28, 68, 159, 193 |
| abstract_inverted_index.to | 26, 77, 102, 129, 149 |
| abstract_inverted_index.The | 88, 95, 187 |
| abstract_inverted_index.and | 12, 71, 113, 135, 177, 202, 220, 240 |
| abstract_inverted_index.for | 153, 218 |
| abstract_inverted_index.has | 229 |
| abstract_inverted_index.the | 24, 29, 36, 42, 45, 54, 58, 79, 85, 104, 119, 126, 140, 144, 172, 182, 225, 233, 237 |
| abstract_inverted_index.von | 145 |
| abstract_inverted_index.CLPM | 89, 141, 190, 207, 228 |
| abstract_inverted_index.This | 20, 168 |
| abstract_inverted_index.from | 16, 84 |
| abstract_inverted_index.head | 30, 176, 219 |
| abstract_inverted_index.high | 215 |
| abstract_inverted_index.loss | 164 |
| abstract_inverted_index.many | 13 |
| abstract_inverted_index.more | 33 |
| abstract_inverted_index.show | 205 |
| abstract_inverted_index.tail | 37, 46, 86, 178, 210 |
| abstract_inverted_index.that | 206 |
| abstract_inverted_index.this | 62 |
| abstract_inverted_index.turn | 52 |
| abstract_inverted_index.with | 32, 195, 224 |
| abstract_inverted_index.(vMF) | 147 |
| abstract_inverted_index.CLRS, | 201 |
| abstract_inverted_index.based | 67 |
| abstract_inverted_index.class | 18 |
| abstract_inverted_index.focus | 27 |
| abstract_inverted_index.image | 9 |
| abstract_inverted_index.issue | 5 |
| abstract_inverted_index.often | 22 |
| abstract_inverted_index.rates | 217 |
| abstract_inverted_index.this, | 160 |
| abstract_inverted_index.three | 93 |
| abstract_inverted_index.which | 50 |
| abstract_inverted_index.while | 180, 213 |
| abstract_inverted_index.(CLPM) | 74 |
| abstract_inverted_index.across | 132 |
| abstract_inverted_index.branch | 99, 123 |
| abstract_inverted_index.causes | 23 |
| abstract_inverted_index.common | 4 |
| abstract_inverted_index.fields | 128 |
| abstract_inverted_index.hybrid | 65 |
| abstract_inverted_index.images | 152 |
| abstract_inverted_index.middle | 221 |
| abstract_inverted_index.remote | 7, 150 |
| abstract_inverted_index.severe | 17 |
| abstract_inverted_index.suffer | 15 |
| abstract_inverted_index.(RSIC), | 11 |
| abstract_inverted_index.Results | 204 |
| abstract_inverted_index.ability | 56 |
| abstract_inverted_index.address | 61 |
| abstract_inverted_index.adjusts | 125 |
| abstract_inverted_index.affects | 53 |
| abstract_inverted_index.applies | 143 |
| abstract_inverted_index.balance | 197 |
| abstract_inverted_index.classes | 31, 47, 179, 211 |
| abstract_inverted_index.enhance | 103 |
| abstract_inverted_index.feature | 156, 185 |
| abstract_inverted_index.improve | 78, 130 |
| abstract_inverted_index.network | 66, 90 |
| abstract_inverted_index.overall | 234 |
| abstract_inverted_index.ratios, | 198 |
| abstract_inverted_index.result, | 41 |
| abstract_inverted_index.samples | 83, 109 |
| abstract_inverted_index.sensing | 8, 151 |
| abstract_inverted_index.spatial | 115 |
| abstract_inverted_index.varying | 196 |
| abstract_inverted_index.Building | 158 |
| abstract_inverted_index.Compared | 223 |
| abstract_inverted_index.accuracy | 81, 212 |
| abstract_inverted_index.adaptive | 120 |
| abstract_inverted_index.approach | 169 |
| abstract_inverted_index.classes. | 38, 87, 222 |
| abstract_inverted_index.consists | 91 |
| abstract_inverted_index.datasets | 14, 194 |
| abstract_inverted_index.designed | 101 |
| abstract_inverted_index.existing | 226 |
| abstract_inverted_index.function | 165 |
| abstract_inverted_index.improves | 209 |
| abstract_inverted_index.learning | 70, 98, 173 |
| abstract_inverted_index.methods, | 227 |
| abstract_inverted_index.problem, | 63, 239 |
| abstract_inverted_index.proposed | 76 |
| abstract_inverted_index.reduced, | 49 |
| abstract_inverted_index.samples, | 34 |
| abstract_inverted_index.SIRI-WHU, | 200 |
| abstract_inverted_index.accuracy, | 236 |
| abstract_inverted_index.addition, | 139 |
| abstract_inverted_index.different | 133 |
| abstract_inverted_index.diversity | 241 |
| abstract_inverted_index.enhancing | 181 |
| abstract_inverted_index.features. | 116 |
| abstract_inverted_index.imbalance | 21 |
| abstract_inverted_index.including | 199 |
| abstract_inverted_index.mechanism | 73 |
| abstract_inverted_index.modeling. | 157 |
| abstract_inverted_index.parallel, | 118 |
| abstract_inverted_index.precision | 43, 183 |
| abstract_inverted_index.processes | 174 |
| abstract_inverted_index.proposed. | 167 |
| abstract_inverted_index.receptive | 127 |
| abstract_inverted_index.vMF-based | 162 |
| abstract_inverted_index.validated | 192 |
| abstract_inverted_index.advantages | 231 |
| abstract_inverted_index.capability | 106 |
| abstract_inverted_index.classifier | 25 |
| abstract_inverted_index.imbalance. | 19 |
| abstract_inverted_index.interclass | 155 |
| abstract_inverted_index.multiscale | 112 |
| abstract_inverted_index.neglecting | 35 |
| abstract_inverted_index.perception | 121 |
| abstract_inverted_index.scenarios. | 137 |
| abstract_inverted_index.tail-class | 108 |
| abstract_inverted_index.Long-tailed | 0 |
| abstract_inverted_index.adaptation. | 242 |
| abstract_inverted_index.challenging | 136 |
| abstract_inverted_index.classifier. | 59 |
| abstract_inverted_index.components. | 94 |
| abstract_inverted_index.contrastive | 163 |
| abstract_inverted_index.coordinates | 171 |
| abstract_inverted_index.cross-space | 69, 96 |
| abstract_inverted_index.dynamically | 124 |
| abstract_inverted_index.effectively | 170 |
| abstract_inverted_index.integrating | 111 |
| abstract_inverted_index.long-tailed | 238 |
| abstract_inverted_index.maintaining | 214 |
| abstract_inverted_index.multiregion | 114 |
| abstract_inverted_index.recognition | 216, 235 |
| abstract_inverted_index.resolutions | 134 |
| abstract_inverted_index.significant | 230 |
| abstract_inverted_index.Mises-Fisher | 146 |
| abstract_inverted_index.distribution | 1, 148 |
| abstract_inverted_index.innovatively | 142 |
| abstract_inverted_index.effectiveness | 188 |
| abstract_inverted_index.significantly | 208 |
| abstract_inverted_index.NWPU-RESISC45. | 203 |
| abstract_inverted_index.classification | 10, 80, 122 |
| abstract_inverted_index.generalization | 55, 131 |
| abstract_inverted_index.representation | 97, 105 |
| abstract_inverted_index.representation. | 186 |
| abstract_inverted_index.high-dimensional | 154 |
| abstract_inverted_index.perception-driven | 72 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.27124234 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |