Clustering analysis for the evolutionary relationships of SARS-CoV-2 strains Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-024-57001-5
To explore the differences and relationships between the available SARS-CoV-2 strains and predict the potential evolutionary direction of these strains, we employ the hierarchical clustering analysis to investigate the evolutionary relationships between the SARS-CoV-2 strains utilizing the genomic sequences collected in China till January 7, 2023. We encode the sequences of the existing SARS-CoV-2 strains into numerical data through k -mer algorithm, then propose four methods to select the representative sample from each type of strains to comprise the dataset for clustering analysis. Three hierarchical clustering algorithms named Ward-Euclidean, Ward-Jaccard, and Average-Euclidean are introduced through combing the Euclidean and Jaccard distance with the Ward and Average linkage clustering algorithms embedded in the OriginPro software. Experimental results reveal that BF.28, BE.1.1.1, BA.5.3, and BA.5.6.4 strains exhibit distinct characteristics which are not observed in other types of SARS-CoV-2 strains, suggesting their being the majority potential sources which the future SARS-CoV-2 strains’ evolution from. Moreover, BA.2.75, CH.1.1, BA.2, BA.5.1.3, BF.7, and B.1.1.214 strains demonstrate enhanced abilities in terms of immune evasion, transmissibility, and pathogenicity. Hence, closely monitoring the evolutionary trends of these strains is crucial to mitigate their impact on public health and society as far as possible.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-024-57001-5
- https://www.nature.com/articles/s41598-024-57001-5.pdf
- OA Status
- gold
- Cited By
- 1
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392922351
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392922351Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-024-57001-5Digital Object Identifier
- Title
-
Clustering analysis for the evolutionary relationships of SARS-CoV-2 strainsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-18Full publication date if available
- Authors
-
Xiangzhong Chen, Mingzhao Wang, Xinglin Liu, Wenjie Zhang, Huan Yan, Xiang Lan, Yandi Xu, Sanyi Tang, Juanying XieList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-024-57001-5Publisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-024-57001-5.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-024-57001-5.pdfDirect OA link when available
- Concepts
-
Jaccard index, Cluster analysis, Hierarchical clustering, Euclidean distance, Biology, Dendrogram, Computational biology, Genome, Data mining, Computer science, Genetics, Artificial intelligence, Gene, Medicine, Genetic diversity, Environmental health, PopulationTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392922351 |
|---|---|
| doi | https://doi.org/10.1038/s41598-024-57001-5 |
| ids.doi | https://doi.org/10.1038/s41598-024-57001-5 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38499639 |
| ids.openalex | https://openalex.org/W4392922351 |
| fwci | 1.038112 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000453 |
| mesh[1].descriptor_ui | D000086382 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | epidemiology |
| mesh[1].descriptor_name | COVID-19 |
| mesh[2].qualifier_ui | Q000235 |
| mesh[2].descriptor_ui | D000086402 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | genetics |
| mesh[2].descriptor_name | SARS-CoV-2 |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D016000 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Cluster Analysis |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000465 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Algorithms |
| mesh[5].qualifier_ui | Q000453 |
| mesh[5].descriptor_ui | D002681 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | epidemiology |
| mesh[5].descriptor_name | China |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006801 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Humans |
| mesh[7].qualifier_ui | Q000453 |
| mesh[7].descriptor_ui | D000086382 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | epidemiology |
| mesh[7].descriptor_name | COVID-19 |
| mesh[8].qualifier_ui | Q000235 |
| mesh[8].descriptor_ui | D000086402 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | genetics |
| mesh[8].descriptor_name | SARS-CoV-2 |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D016000 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Cluster Analysis |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D000465 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Algorithms |
| mesh[11].qualifier_ui | Q000453 |
| mesh[11].descriptor_ui | D002681 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | epidemiology |
| mesh[11].descriptor_name | China |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D006801 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Humans |
| mesh[13].qualifier_ui | Q000453 |
| mesh[13].descriptor_ui | D000086382 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | epidemiology |
| mesh[13].descriptor_name | COVID-19 |
| mesh[14].qualifier_ui | Q000235 |
| mesh[14].descriptor_ui | D000086402 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | genetics |
| mesh[14].descriptor_name | SARS-CoV-2 |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D016000 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Cluster Analysis |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D000465 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Algorithms |
| mesh[17].qualifier_ui | Q000453 |
| mesh[17].descriptor_ui | D002681 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | epidemiology |
| mesh[17].descriptor_name | China |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D006801 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Humans |
| mesh[19].qualifier_ui | Q000453 |
| mesh[19].descriptor_ui | D000086382 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | epidemiology |
| mesh[19].descriptor_name | COVID-19 |
| mesh[20].qualifier_ui | Q000235 |
| mesh[20].descriptor_ui | D000086402 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | genetics |
| mesh[20].descriptor_name | SARS-CoV-2 |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D016000 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Cluster Analysis |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D000465 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Algorithms |
| mesh[23].qualifier_ui | Q000453 |
| mesh[23].descriptor_ui | D002681 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | epidemiology |
| mesh[23].descriptor_name | China |
| type | article |
| title | Clustering analysis for the evolutionary relationships of SARS-CoV-2 strains |
| awards[0].id | https://openalex.org/G8686470721 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 61673251 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G148668811 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 12031010 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G166695096 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 62076159 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 1 |
| biblio.volume | 14 |
| biblio.last_page | 6428 |
| biblio.first_page | 6428 |
| topics[0].id | https://openalex.org/T10118 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2725 |
| topics[0].subfield.display_name | Infectious Diseases |
| topics[0].display_name | SARS-CoV-2 and COVID-19 Research |
| topics[1].id | https://openalex.org/T11754 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9916999936103821 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2725 |
| topics[1].subfield.display_name | Infectious Diseases |
| topics[1].display_name | SARS-CoV-2 detection and testing |
| topics[2].id | https://openalex.org/T10410 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9904999732971191 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2611 |
| topics[2].subfield.display_name | Modeling and Simulation |
| topics[2].display_name | COVID-19 epidemiological studies |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| concepts[0].id | https://openalex.org/C203519979 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9403222799301147 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q865360 |
| concepts[0].display_name | Jaccard index |
| concepts[1].id | https://openalex.org/C73555534 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7912980318069458 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[1].display_name | Cluster analysis |
| concepts[2].id | https://openalex.org/C92835128 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6972490549087524 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1277447 |
| concepts[2].display_name | Hierarchical clustering |
| concepts[3].id | https://openalex.org/C120174047 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6448521614074707 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q847073 |
| concepts[3].display_name | Euclidean distance |
| concepts[4].id | https://openalex.org/C86803240 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5057227611541748 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[4].display_name | Biology |
| concepts[5].id | https://openalex.org/C172312944 |
| concepts[5].level | 4 |
| concepts[5].score | 0.44149404764175415 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1957903 |
| concepts[5].display_name | Dendrogram |
| concepts[6].id | https://openalex.org/C70721500 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4396766424179077 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[6].display_name | Computational biology |
| concepts[7].id | https://openalex.org/C141231307 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4376063942909241 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7020 |
| concepts[7].display_name | Genome |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3762526512145996 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.35818928480148315 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C54355233 |
| concepts[10].level | 1 |
| concepts[10].score | 0.34693294763565063 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[10].display_name | Genetics |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.22773289680480957 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C104317684 |
| concepts[12].level | 2 |
| concepts[12].score | 0.21253767609596252 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[12].display_name | Gene |
| concepts[13].id | https://openalex.org/C71924100 |
| concepts[13].level | 0 |
| concepts[13].score | 0.09134960174560547 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[13].display_name | Medicine |
| concepts[14].id | https://openalex.org/C81977670 |
| concepts[14].level | 3 |
| concepts[14].score | 0.08343112468719482 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q585259 |
| concepts[14].display_name | Genetic diversity |
| concepts[15].id | https://openalex.org/C99454951 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[15].display_name | Environmental health |
| concepts[16].id | https://openalex.org/C2908647359 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[16].display_name | Population |
| keywords[0].id | https://openalex.org/keywords/jaccard-index |
| keywords[0].score | 0.9403222799301147 |
| keywords[0].display_name | Jaccard index |
| keywords[1].id | https://openalex.org/keywords/cluster-analysis |
| keywords[1].score | 0.7912980318069458 |
| keywords[1].display_name | Cluster analysis |
| keywords[2].id | https://openalex.org/keywords/hierarchical-clustering |
| keywords[2].score | 0.6972490549087524 |
| keywords[2].display_name | Hierarchical clustering |
| keywords[3].id | https://openalex.org/keywords/euclidean-distance |
| keywords[3].score | 0.6448521614074707 |
| keywords[3].display_name | Euclidean distance |
| keywords[4].id | https://openalex.org/keywords/biology |
| keywords[4].score | 0.5057227611541748 |
| keywords[4].display_name | Biology |
| keywords[5].id | https://openalex.org/keywords/dendrogram |
| keywords[5].score | 0.44149404764175415 |
| keywords[5].display_name | Dendrogram |
| keywords[6].id | https://openalex.org/keywords/computational-biology |
| keywords[6].score | 0.4396766424179077 |
| keywords[6].display_name | Computational biology |
| keywords[7].id | https://openalex.org/keywords/genome |
| keywords[7].score | 0.4376063942909241 |
| keywords[7].display_name | Genome |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.3762526512145996 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.35818928480148315 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/genetics |
| keywords[10].score | 0.34693294763565063 |
| keywords[10].display_name | Genetics |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.22773289680480957 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/gene |
| keywords[12].score | 0.21253767609596252 |
| keywords[12].display_name | Gene |
| keywords[13].id | https://openalex.org/keywords/medicine |
| keywords[13].score | 0.09134960174560547 |
| keywords[13].display_name | Medicine |
| keywords[14].id | https://openalex.org/keywords/genetic-diversity |
| keywords[14].score | 0.08343112468719482 |
| keywords[14].display_name | Genetic diversity |
| language | en |
| locations[0].id | doi:10.1038/s41598-024-57001-5 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-024-57001-5.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-024-57001-5 |
| locations[1].id | pmid:38499639 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38499639 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10948388 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10948388/pdf/41598_2024_Article_57001.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sci Rep |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10948388 |
| locations[3].id | pmh:oai:doaj.org/article:26b12de895cf41d9a93814198cc9edab |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Scientific Reports, Vol 14, Iss 1, Pp 1-14 (2024) |
| locations[3].landing_page_url | https://doaj.org/article/26b12de895cf41d9a93814198cc9edab |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5038506255 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2294-7487 |
| authorships[0].author.display_name | Xiangzhong Chen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I88830068 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science, Shaanxi Normal University, Xian, 710119, China |
| authorships[0].institutions[0].id | https://openalex.org/I88830068 |
| authorships[0].institutions[0].ror | https://ror.org/0170z8493 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I88830068 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shaanxi Normal University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiangzhong Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science, Shaanxi Normal University, Xian, 710119, China |
| authorships[1].author.id | https://openalex.org/A5087991546 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8277-4963 |
| authorships[1].author.display_name | Mingzhao Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I88830068 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science, Shaanxi Normal University, Xian, 710119, China |
| authorships[1].institutions[0].id | https://openalex.org/I88830068 |
| authorships[1].institutions[0].ror | https://ror.org/0170z8493 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I88830068 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shaanxi Normal University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mingzhao Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Science, Shaanxi Normal University, Xian, 710119, China |
| authorships[2].author.id | https://openalex.org/A5054505709 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7503-4211 |
| authorships[2].author.display_name | Xinglin Liu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I88830068 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer Science, Shaanxi Normal University, Xian, 710119, China |
| authorships[2].institutions[0].id | https://openalex.org/I88830068 |
| authorships[2].institutions[0].ror | https://ror.org/0170z8493 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I88830068 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shaanxi Normal University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xinglin Liu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer Science, Shaanxi Normal University, Xian, 710119, China |
| authorships[3].author.id | https://openalex.org/A5100385498 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6572-2600 |
| authorships[3].author.display_name | Wenjie Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I88830068 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer Science, Shaanxi Normal University, Xian, 710119, China |
| authorships[3].institutions[0].id | https://openalex.org/I88830068 |
| authorships[3].institutions[0].ror | https://ror.org/0170z8493 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I88830068 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Shaanxi Normal University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wenjie Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer Science, Shaanxi Normal University, Xian, 710119, China |
| authorships[4].author.id | https://openalex.org/A5101151505 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Huan Yan |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I88830068 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Computer Science, Shaanxi Normal University, Xian, 710119, China |
| authorships[4].institutions[0].id | https://openalex.org/I88830068 |
| authorships[4].institutions[0].ror | https://ror.org/0170z8493 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I88830068 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Shaanxi Normal University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Huan Yan |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Computer Science, Shaanxi Normal University, Xian, 710119, China |
| authorships[5].author.id | https://openalex.org/A5034701804 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4845-9956 |
| authorships[5].author.display_name | Xiang Lan |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I88830068 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Computer Science, Shaanxi Normal University, Xian, 710119, China |
| authorships[5].institutions[0].id | https://openalex.org/I88830068 |
| authorships[5].institutions[0].ror | https://ror.org/0170z8493 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I88830068 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Shaanxi Normal University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xiang Lan |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Computer Science, Shaanxi Normal University, Xian, 710119, China |
| authorships[6].author.id | https://openalex.org/A5111149365 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Yandi Xu |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I88830068 |
| authorships[6].affiliations[0].raw_affiliation_string | College of Life Sciences, Shaanxi Normal University, Xian, 710119, China |
| authorships[6].institutions[0].id | https://openalex.org/I88830068 |
| authorships[6].institutions[0].ror | https://ror.org/0170z8493 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I88830068 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Shaanxi Normal University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Yandi Xu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | College of Life Sciences, Shaanxi Normal University, Xian, 710119, China |
| authorships[7].author.id | https://openalex.org/A5041520845 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-3324-746X |
| authorships[7].author.display_name | Sanyi Tang |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I88830068 |
| authorships[7].affiliations[0].raw_affiliation_string | School of Mathematics and Statistics, Shaanxi Normal University, Xian, 710119, China |
| authorships[7].institutions[0].id | https://openalex.org/I88830068 |
| authorships[7].institutions[0].ror | https://ror.org/0170z8493 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I88830068 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Shaanxi Normal University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Sanyi Tang |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | School of Mathematics and Statistics, Shaanxi Normal University, Xian, 710119, China |
| authorships[8].author.id | https://openalex.org/A5076397429 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-6540-4397 |
| authorships[8].author.display_name | Juanying Xie |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I88830068 |
| authorships[8].affiliations[0].raw_affiliation_string | School of Computer Science, Shaanxi Normal University, Xian, 710119, China |
| authorships[8].institutions[0].id | https://openalex.org/I88830068 |
| authorships[8].institutions[0].ror | https://ror.org/0170z8493 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I88830068 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Shaanxi Normal University |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Juanying Xie |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | School of Computer Science, Shaanxi Normal University, Xian, 710119, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-024-57001-5.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Clustering analysis for the evolutionary relationships of SARS-CoV-2 strains |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10118 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2725 |
| primary_topic.subfield.display_name | Infectious Diseases |
| primary_topic.display_name | SARS-CoV-2 and COVID-19 Research |
| related_works | https://openalex.org/W2363437472, https://openalex.org/W2588953816, https://openalex.org/W2365580784, https://openalex.org/W2183641940, https://openalex.org/W2198459091, https://openalex.org/W4394465317, https://openalex.org/W2186805423, https://openalex.org/W2093888054, https://openalex.org/W4319600771, https://openalex.org/W2116487370 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1038/s41598-024-57001-5 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-024-57001-5.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-024-57001-5 |
| primary_location.id | doi:10.1038/s41598-024-57001-5 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-024-57001-5.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-024-57001-5 |
| publication_date | 2024-03-18 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4319988528, https://openalex.org/W4285137529, https://openalex.org/W3001897055, https://openalex.org/W6772996879, https://openalex.org/W3038738527, https://openalex.org/W4381736028, https://openalex.org/W4292266001, https://openalex.org/W2022368654, https://openalex.org/W2016381774, https://openalex.org/W2165835468, https://openalex.org/W2403162523, https://openalex.org/W3000071285, https://openalex.org/W4224135612, https://openalex.org/W4304942947, https://openalex.org/W4306157788, https://openalex.org/W4306886957, https://openalex.org/W6846310743, https://openalex.org/W4291002380, https://openalex.org/W4294216081, https://openalex.org/W4297537362, https://openalex.org/W4304585374, https://openalex.org/W4321172609, https://openalex.org/W4323041242, https://openalex.org/W4318020060, https://openalex.org/W4288033636, https://openalex.org/W4323350034, https://openalex.org/W4317718208, https://openalex.org/W4297387533, https://openalex.org/W4377104075, https://openalex.org/W4378220358, https://openalex.org/W4309686974 |
| referenced_works_count | 31 |
| abstract_inverted_index.k | 60 |
| abstract_inverted_index.7, | 45 |
| abstract_inverted_index.To | 1 |
| abstract_inverted_index.We | 47 |
| abstract_inverted_index.as | 192, 194 |
| abstract_inverted_index.in | 41, 111, 132, 164 |
| abstract_inverted_index.is | 181 |
| abstract_inverted_index.of | 18, 51, 75, 135, 166, 178 |
| abstract_inverted_index.on | 187 |
| abstract_inverted_index.to | 27, 67, 77, 183 |
| abstract_inverted_index.we | 21 |
| abstract_inverted_index.and | 5, 12, 91, 99, 105, 122, 158, 170, 190 |
| abstract_inverted_index.are | 93, 129 |
| abstract_inverted_index.far | 193 |
| abstract_inverted_index.for | 81 |
| abstract_inverted_index.not | 130 |
| abstract_inverted_index.the | 3, 8, 14, 23, 29, 33, 37, 49, 52, 69, 79, 97, 103, 112, 141, 146, 175 |
| abstract_inverted_index.-mer | 61 |
| abstract_inverted_index.Ward | 104 |
| abstract_inverted_index.data | 58 |
| abstract_inverted_index.each | 73 |
| abstract_inverted_index.four | 65 |
| abstract_inverted_index.from | 72 |
| abstract_inverted_index.into | 56 |
| abstract_inverted_index.that | 118 |
| abstract_inverted_index.then | 63 |
| abstract_inverted_index.till | 43 |
| abstract_inverted_index.type | 74 |
| abstract_inverted_index.with | 102 |
| abstract_inverted_index.2023. | 46 |
| abstract_inverted_index.BA.2, | 155 |
| abstract_inverted_index.BF.7, | 157 |
| abstract_inverted_index.China | 42 |
| abstract_inverted_index.Three | 84 |
| abstract_inverted_index.being | 140 |
| abstract_inverted_index.from. | 151 |
| abstract_inverted_index.named | 88 |
| abstract_inverted_index.other | 133 |
| abstract_inverted_index.terms | 165 |
| abstract_inverted_index.their | 139, 185 |
| abstract_inverted_index.these | 19, 179 |
| abstract_inverted_index.types | 134 |
| abstract_inverted_index.which | 128, 145 |
| abstract_inverted_index.BF.28, | 119 |
| abstract_inverted_index.Hence, | 172 |
| abstract_inverted_index.employ | 22 |
| abstract_inverted_index.encode | 48 |
| abstract_inverted_index.future | 147 |
| abstract_inverted_index.health | 189 |
| abstract_inverted_index.immune | 167 |
| abstract_inverted_index.impact | 186 |
| abstract_inverted_index.public | 188 |
| abstract_inverted_index.reveal | 117 |
| abstract_inverted_index.sample | 71 |
| abstract_inverted_index.select | 68 |
| abstract_inverted_index.trends | 177 |
| abstract_inverted_index.Average | 106 |
| abstract_inverted_index.BA.5.3, | 121 |
| abstract_inverted_index.CH.1.1, | 154 |
| abstract_inverted_index.Jaccard | 100 |
| abstract_inverted_index.January | 44 |
| abstract_inverted_index.between | 7, 32 |
| abstract_inverted_index.closely | 173 |
| abstract_inverted_index.combing | 96 |
| abstract_inverted_index.crucial | 182 |
| abstract_inverted_index.dataset | 80 |
| abstract_inverted_index.exhibit | 125 |
| abstract_inverted_index.explore | 2 |
| abstract_inverted_index.genomic | 38 |
| abstract_inverted_index.linkage | 107 |
| abstract_inverted_index.methods | 66 |
| abstract_inverted_index.predict | 13 |
| abstract_inverted_index.propose | 64 |
| abstract_inverted_index.results | 116 |
| abstract_inverted_index.society | 191 |
| abstract_inverted_index.sources | 144 |
| abstract_inverted_index.strains | 11, 35, 55, 76, 124, 160, 180 |
| abstract_inverted_index.through | 59, 95 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.BA.2.75, | 153 |
| abstract_inverted_index.BA.5.6.4 | 123 |
| abstract_inverted_index.analysis | 26 |
| abstract_inverted_index.comprise | 78 |
| abstract_inverted_index.distance | 101 |
| abstract_inverted_index.distinct | 126 |
| abstract_inverted_index.embedded | 110 |
| abstract_inverted_index.enhanced | 162 |
| abstract_inverted_index.evasion, | 168 |
| abstract_inverted_index.existing | 53 |
| abstract_inverted_index.majority | 142 |
| abstract_inverted_index.mitigate | 184 |
| abstract_inverted_index.observed | 131 |
| abstract_inverted_index.strains, | 20, 137 |
| abstract_inverted_index.B.1.1.214 | 159 |
| abstract_inverted_index.BA.5.1.3, | 156 |
| abstract_inverted_index.BE.1.1.1, | 120 |
| abstract_inverted_index.Euclidean | 98 |
| abstract_inverted_index.Moreover, | 152 |
| abstract_inverted_index.OriginPro | 113 |
| abstract_inverted_index.abilities | 163 |
| abstract_inverted_index.analysis. | 83 |
| abstract_inverted_index.available | 9 |
| abstract_inverted_index.collected | 40 |
| abstract_inverted_index.direction | 17 |
| abstract_inverted_index.evolution | 150 |
| abstract_inverted_index.numerical | 57 |
| abstract_inverted_index.possible. | 195 |
| abstract_inverted_index.potential | 15, 143 |
| abstract_inverted_index.sequences | 39, 50 |
| abstract_inverted_index.software. | 114 |
| abstract_inverted_index.utilizing | 36 |
| abstract_inverted_index.SARS-CoV-2 | 10, 34, 54, 136, 148 |
| abstract_inverted_index.algorithm, | 62 |
| abstract_inverted_index.algorithms | 87, 109 |
| abstract_inverted_index.clustering | 25, 82, 86, 108 |
| abstract_inverted_index.introduced | 94 |
| abstract_inverted_index.monitoring | 174 |
| abstract_inverted_index.strains’ | 149 |
| abstract_inverted_index.suggesting | 138 |
| abstract_inverted_index.demonstrate | 161 |
| abstract_inverted_index.differences | 4 |
| abstract_inverted_index.investigate | 28 |
| abstract_inverted_index.Experimental | 115 |
| abstract_inverted_index.evolutionary | 16, 30, 176 |
| abstract_inverted_index.hierarchical | 24, 85 |
| abstract_inverted_index.Ward-Jaccard, | 90 |
| abstract_inverted_index.relationships | 6, 31 |
| abstract_inverted_index.pathogenicity. | 171 |
| abstract_inverted_index.representative | 70 |
| abstract_inverted_index.Ward-Euclidean, | 89 |
| abstract_inverted_index.characteristics | 127 |
| abstract_inverted_index.Average-Euclidean | 92 |
| abstract_inverted_index.transmissibility, | 169 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5041520845 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I88830068 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.49000000953674316 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.60423084 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |