Clustering in Networks with Time-varying Nodal Attributes Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.04859
This manuscript studies nodal clustering in graphs having a time series at each node. The framework includes priors for low-dimensional representations and a decoder that bridges the latent representations and time series. The structural and temporal patterns are fused into representations that facilitate clustering, addressing the limitation that the evolution of nodal attributes is often overlooked. Parameters are learned via maximum approximate likelihood, with a graph-fused LASSO regularization imposed on prior parameters. The optimization problem is solved via alternating direction method of multipliers; Langevin dynamics are employed for posterior inference. Simulation studies on block and grid graphs with autoregressive dynamics, and applications to California county temperatures and a book word co-occurrence network demonstrate the effectiveness of the proposed method.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2511.04859
- https://arxiv.org/pdf/2511.04859
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416269533
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416269533Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.04859Digital Object Identifier
- Title
-
Clustering in Networks with Time-varying Nodal AttributesWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-06Full publication date if available
- Authors
-
Yik Lun Kei, Rebecca Killick, Xi Chen, Robert LundList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.04859Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.04859Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.04859Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416269533 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.04859 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.04859 |
| ids.openalex | https://openalex.org/W4416269533 |
| fwci | |
| type | preprint |
| title | Clustering in Networks with Time-varying Nodal Attributes |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.04859 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.04859 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.04859 |
| locations[1].id | doi:10.48550/arxiv.2511.04859 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2511.04859 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5067808578 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2164-3294 |
| authorships[0].author.display_name | Yik Lun Kei |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kei, Yik Lun |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5075851671 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0583-3960 |
| authorships[1].author.display_name | Rebecca Killick |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Killick, Rebecca |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100330044 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3647-5617 |
| authorships[2].author.display_name | Xi Chen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chen, Xi |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5006419852 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2705-1583 |
| authorships[3].author.display_name | Robert Lund |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lund, Robert |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.04859 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-11T00:00:00 |
| display_name | Clustering in Networks with Time-varying Nodal Attributes |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T09:49:00.472555 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.04859 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.04859 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.04859 |
| primary_location.id | pmh:oai:arXiv.org:2511.04859 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.04859 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.04859 |
| publication_date | 2025-11-06 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 8, 22, 64, 107 |
| abstract_inverted_index.at | 11 |
| abstract_inverted_index.in | 5 |
| abstract_inverted_index.is | 53, 75 |
| abstract_inverted_index.of | 50, 81, 115 |
| abstract_inverted_index.on | 69, 92 |
| abstract_inverted_index.to | 102 |
| abstract_inverted_index.The | 14, 32, 72 |
| abstract_inverted_index.and | 21, 29, 34, 94, 100, 106 |
| abstract_inverted_index.are | 37, 57, 85 |
| abstract_inverted_index.for | 18, 87 |
| abstract_inverted_index.the | 26, 45, 48, 113, 116 |
| abstract_inverted_index.via | 59, 77 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.book | 108 |
| abstract_inverted_index.each | 12 |
| abstract_inverted_index.grid | 95 |
| abstract_inverted_index.into | 39 |
| abstract_inverted_index.that | 24, 41, 47 |
| abstract_inverted_index.time | 9, 30 |
| abstract_inverted_index.with | 63, 97 |
| abstract_inverted_index.word | 109 |
| abstract_inverted_index.LASSO | 66 |
| abstract_inverted_index.block | 93 |
| abstract_inverted_index.fused | 38 |
| abstract_inverted_index.nodal | 3, 51 |
| abstract_inverted_index.node. | 13 |
| abstract_inverted_index.often | 54 |
| abstract_inverted_index.prior | 70 |
| abstract_inverted_index.county | 104 |
| abstract_inverted_index.graphs | 6, 96 |
| abstract_inverted_index.having | 7 |
| abstract_inverted_index.latent | 27 |
| abstract_inverted_index.method | 80 |
| abstract_inverted_index.priors | 17 |
| abstract_inverted_index.series | 10 |
| abstract_inverted_index.solved | 76 |
| abstract_inverted_index.bridges | 25 |
| abstract_inverted_index.decoder | 23 |
| abstract_inverted_index.imposed | 68 |
| abstract_inverted_index.learned | 58 |
| abstract_inverted_index.maximum | 60 |
| abstract_inverted_index.method. | 118 |
| abstract_inverted_index.network | 111 |
| abstract_inverted_index.problem | 74 |
| abstract_inverted_index.series. | 31 |
| abstract_inverted_index.studies | 2, 91 |
| abstract_inverted_index.Langevin | 83 |
| abstract_inverted_index.dynamics | 84 |
| abstract_inverted_index.employed | 86 |
| abstract_inverted_index.includes | 16 |
| abstract_inverted_index.patterns | 36 |
| abstract_inverted_index.proposed | 117 |
| abstract_inverted_index.temporal | 35 |
| abstract_inverted_index.direction | 79 |
| abstract_inverted_index.dynamics, | 99 |
| abstract_inverted_index.evolution | 49 |
| abstract_inverted_index.framework | 15 |
| abstract_inverted_index.posterior | 88 |
| abstract_inverted_index.California | 103 |
| abstract_inverted_index.Parameters | 56 |
| abstract_inverted_index.Simulation | 90 |
| abstract_inverted_index.addressing | 44 |
| abstract_inverted_index.attributes | 52 |
| abstract_inverted_index.clustering | 4 |
| abstract_inverted_index.facilitate | 42 |
| abstract_inverted_index.inference. | 89 |
| abstract_inverted_index.limitation | 46 |
| abstract_inverted_index.manuscript | 1 |
| abstract_inverted_index.structural | 33 |
| abstract_inverted_index.alternating | 78 |
| abstract_inverted_index.approximate | 61 |
| abstract_inverted_index.clustering, | 43 |
| abstract_inverted_index.demonstrate | 112 |
| abstract_inverted_index.graph-fused | 65 |
| abstract_inverted_index.likelihood, | 62 |
| abstract_inverted_index.overlooked. | 55 |
| abstract_inverted_index.parameters. | 71 |
| abstract_inverted_index.applications | 101 |
| abstract_inverted_index.multipliers; | 82 |
| abstract_inverted_index.optimization | 73 |
| abstract_inverted_index.temperatures | 105 |
| abstract_inverted_index.co-occurrence | 110 |
| abstract_inverted_index.effectiveness | 114 |
| abstract_inverted_index.autoregressive | 98 |
| abstract_inverted_index.regularization | 67 |
| abstract_inverted_index.low-dimensional | 19 |
| abstract_inverted_index.representations | 20, 28, 40 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |