Clustering of Pain Dynamics in Sickle Cell Disease from Sparse, Uneven Samples Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2108.13963
Irregularly sampled time series data are common in a variety of fields. Many typical methods for drawing insight from data fail in this case. Here we attempt to generalize methods for clustering trajectories to irregularly and sparsely sampled data. We first construct synthetic data sets, then propose and assess four methods of data alignment to allow for application of spectral clustering. We also repeat the same process for real data drawn from medical records of patients with sickle cell disease -- patients whose subjective experiences of pain were tracked for several months via a mobile app. We find that different methods for aligning irregularly sampled sparse data sets can lead to different optimal numbers of clusters, even for synthetic data with known properties. For the case of sickle cell disease, we find that three clusters is a reasonable choice, and these appear to correspond to (1) a low pain group with occasionally acute pain, (2) a group which experiences moderate mean pain that fluctuates often from low to high, and (3) a group that experiences persistent high levels of pain. Our results may help physicians and patients better understand and manage patients' pain levels over time, and we expect that the methods we develop will apply to a wide range of other data sources in medicine and beyond.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2108.13963
- https://arxiv.org/pdf/2108.13963
- OA Status
- green
- Cited By
- 1
- References
- 19
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3196567527
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3196567527Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2108.13963Digital Object Identifier
- Title
-
Clustering of Pain Dynamics in Sickle Cell Disease from Sparse, Uneven SamplesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-08-31Full publication date if available
- Authors
-
Gary K. Nave, Swati Padhee, Amanuel Alambo, Tanvi Banerjee, Nirmish Shah, Daniel M. AbramsList of authors in order
- Landing page
-
https://arxiv.org/abs/2108.13963Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2108.13963Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2108.13963Direct OA link when available
- Concepts
-
Cluster analysis, Disease, Computer science, Construct (python library), Data mining, Variety (cybernetics), Medicine, Artificial intelligence, Pathology, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
19Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3196567527 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2108.13963 |
| ids.doi | https://doi.org/10.48550/arxiv.2108.13963 |
| ids.mag | 3196567527 |
| ids.openalex | https://openalex.org/W3196567527 |
| fwci | |
| type | preprint |
| title | Clustering of Pain Dynamics in Sickle Cell Disease from Sparse, Uneven Samples |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10554 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2716 |
| topics[0].subfield.display_name | Genetics |
| topics[0].display_name | Hemoglobinopathies and Related Disorders |
| topics[1].id | https://openalex.org/T10836 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9591000080108643 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Metabolomics and Mass Spectrometry Studies |
| topics[2].id | https://openalex.org/T11819 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9284999966621399 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2713 |
| topics[2].subfield.display_name | Epidemiology |
| topics[2].display_name | Data-Driven Disease Surveillance |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C73555534 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8102483749389648 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[0].display_name | Cluster analysis |
| concepts[1].id | https://openalex.org/C2779134260 |
| concepts[1].level | 2 |
| concepts[1].score | 0.557473361492157 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[1].display_name | Disease |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5378761291503906 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2780801425 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4958992898464203 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5164392 |
| concepts[3].display_name | Construct (python library) |
| concepts[4].id | https://openalex.org/C124101348 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4579339325428009 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[4].display_name | Data mining |
| concepts[5].id | https://openalex.org/C136197465 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4506693482398987 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1729295 |
| concepts[5].display_name | Variety (cybernetics) |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.38035205006599426 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.28468942642211914 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C142724271 |
| concepts[8].level | 1 |
| concepts[8].score | 0.12531805038452148 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[8].display_name | Pathology |
| concepts[9].id | https://openalex.org/C199360897 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[9].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/cluster-analysis |
| keywords[0].score | 0.8102483749389648 |
| keywords[0].display_name | Cluster analysis |
| keywords[1].id | https://openalex.org/keywords/disease |
| keywords[1].score | 0.557473361492157 |
| keywords[1].display_name | Disease |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5378761291503906 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/construct |
| keywords[3].score | 0.4958992898464203 |
| keywords[3].display_name | Construct (python library) |
| keywords[4].id | https://openalex.org/keywords/data-mining |
| keywords[4].score | 0.4579339325428009 |
| keywords[4].display_name | Data mining |
| keywords[5].id | https://openalex.org/keywords/variety |
| keywords[5].score | 0.4506693482398987 |
| keywords[5].display_name | Variety (cybernetics) |
| keywords[6].id | https://openalex.org/keywords/medicine |
| keywords[6].score | 0.38035205006599426 |
| keywords[6].display_name | Medicine |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.28468942642211914 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/pathology |
| keywords[8].score | 0.12531805038452148 |
| keywords[8].display_name | Pathology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2108.13963 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2108.13963 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2108.13963 |
| locations[1].id | pmh:oai:corescholar.libraries.wright.edu:cse-1634 |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Computer Science and Engineering Faculty Publications |
| locations[1].landing_page_url | https://corescholar.libraries.wright.edu/cse/634 |
| locations[2].id | doi:10.48550/arxiv.2108.13963 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.2108.13963 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5043782936 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7157-6731 |
| authorships[0].author.display_name | Gary K. Nave |
| authorships[0].affiliations[0].raw_affiliation_string | Northwestern University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gary K. Nave Jr. |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Northwestern University |
| authorships[1].author.id | https://openalex.org/A5060884184 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5461-601X |
| authorships[1].author.display_name | Swati Padhee |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Swati Padhee |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5051490157 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3643-9053 |
| authorships[2].author.display_name | Amanuel Alambo |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Amanuel Alambo |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5084532918 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9794-3755 |
| authorships[3].author.display_name | Tanvi Banerjee |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tanvi Banerjee |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5083173795 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7506-0935 |
| authorships[4].author.display_name | Nirmish Shah |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Nirmish Shah |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5086653394 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6015-8358 |
| authorships[5].author.display_name | Daniel M. Abrams |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Daniel M. Abrams |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2108.13963 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-09-13T00:00:00 |
| display_name | Clustering of Pain Dynamics in Sickle Cell Disease from Sparse, Uneven Samples |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10554 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2716 |
| primary_topic.subfield.display_name | Genetics |
| primary_topic.display_name | Hemoglobinopathies and Related Disorders |
| related_works | https://openalex.org/W2366107444, https://openalex.org/W4388145910, https://openalex.org/W2381570729, https://openalex.org/W1976205134, https://openalex.org/W4248336175, https://openalex.org/W2031260042, https://openalex.org/W2391445434, https://openalex.org/W3009369890, https://openalex.org/W4312490297, https://openalex.org/W2062212388 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2108.13963 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2108.13963 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2108.13963 |
| primary_location.id | pmh:oai:arXiv.org:2108.13963 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2108.13963 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2108.13963 |
| publication_date | 2021-08-31 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2520645534, https://openalex.org/W2132661939, https://openalex.org/W3178990523, https://openalex.org/W1978070851, https://openalex.org/W3133819740, https://openalex.org/W2132914434, https://openalex.org/W925060454, https://openalex.org/W2029064186, https://openalex.org/W1986316936, https://openalex.org/W3106781099, https://openalex.org/W1977512462, https://openalex.org/W2410255620, https://openalex.org/W1988997815, https://openalex.org/W2780156044, https://openalex.org/W2096295012, https://openalex.org/W2588413211, https://openalex.org/W2623933243, https://openalex.org/W2094125744, https://openalex.org/W2051224630 |
| referenced_works_count | 19 |
| abstract_inverted_index.a | 8, 93, 136, 146, 155, 171, 207 |
| abstract_inverted_index.-- | 80 |
| abstract_inverted_index.We | 39, 61, 96 |
| abstract_inverted_index.in | 7, 21, 214 |
| abstract_inverted_index.is | 135 |
| abstract_inverted_index.of | 10, 51, 58, 74, 85, 114, 126, 178, 210 |
| abstract_inverted_index.to | 27, 33, 54, 110, 142, 144, 167, 206 |
| abstract_inverted_index.we | 25, 130, 197, 202 |
| abstract_inverted_index.(1) | 145 |
| abstract_inverted_index.(2) | 154 |
| abstract_inverted_index.(3) | 170 |
| abstract_inverted_index.For | 123 |
| abstract_inverted_index.Our | 180 |
| abstract_inverted_index.and | 35, 47, 139, 169, 185, 189, 196, 216 |
| abstract_inverted_index.are | 5 |
| abstract_inverted_index.can | 108 |
| abstract_inverted_index.for | 15, 30, 56, 67, 89, 101, 117 |
| abstract_inverted_index.low | 147, 166 |
| abstract_inverted_index.may | 182 |
| abstract_inverted_index.the | 64, 124, 200 |
| abstract_inverted_index.via | 92 |
| abstract_inverted_index.Here | 24 |
| abstract_inverted_index.Many | 12 |
| abstract_inverted_index.also | 62 |
| abstract_inverted_index.app. | 95 |
| abstract_inverted_index.case | 125 |
| abstract_inverted_index.cell | 78, 128 |
| abstract_inverted_index.data | 4, 19, 43, 52, 69, 106, 119, 212 |
| abstract_inverted_index.even | 116 |
| abstract_inverted_index.fail | 20 |
| abstract_inverted_index.find | 97, 131 |
| abstract_inverted_index.four | 49 |
| abstract_inverted_index.from | 18, 71, 165 |
| abstract_inverted_index.help | 183 |
| abstract_inverted_index.high | 176 |
| abstract_inverted_index.lead | 109 |
| abstract_inverted_index.mean | 160 |
| abstract_inverted_index.over | 194 |
| abstract_inverted_index.pain | 86, 148, 161, 192 |
| abstract_inverted_index.real | 68 |
| abstract_inverted_index.same | 65 |
| abstract_inverted_index.sets | 107 |
| abstract_inverted_index.that | 98, 132, 162, 173, 199 |
| abstract_inverted_index.then | 45 |
| abstract_inverted_index.this | 22 |
| abstract_inverted_index.time | 2 |
| abstract_inverted_index.were | 87 |
| abstract_inverted_index.wide | 208 |
| abstract_inverted_index.will | 204 |
| abstract_inverted_index.with | 76, 120, 150 |
| abstract_inverted_index.acute | 152 |
| abstract_inverted_index.allow | 55 |
| abstract_inverted_index.apply | 205 |
| abstract_inverted_index.case. | 23 |
| abstract_inverted_index.data. | 38 |
| abstract_inverted_index.drawn | 70 |
| abstract_inverted_index.first | 40 |
| abstract_inverted_index.group | 149, 156, 172 |
| abstract_inverted_index.high, | 168 |
| abstract_inverted_index.known | 121 |
| abstract_inverted_index.often | 164 |
| abstract_inverted_index.other | 211 |
| abstract_inverted_index.pain, | 153 |
| abstract_inverted_index.pain. | 179 |
| abstract_inverted_index.range | 209 |
| abstract_inverted_index.sets, | 44 |
| abstract_inverted_index.these | 140 |
| abstract_inverted_index.three | 133 |
| abstract_inverted_index.time, | 195 |
| abstract_inverted_index.which | 157 |
| abstract_inverted_index.whose | 82 |
| abstract_inverted_index.appear | 141 |
| abstract_inverted_index.assess | 48 |
| abstract_inverted_index.better | 187 |
| abstract_inverted_index.common | 6 |
| abstract_inverted_index.expect | 198 |
| abstract_inverted_index.levels | 177, 193 |
| abstract_inverted_index.manage | 190 |
| abstract_inverted_index.mobile | 94 |
| abstract_inverted_index.months | 91 |
| abstract_inverted_index.repeat | 63 |
| abstract_inverted_index.series | 3 |
| abstract_inverted_index.sickle | 77, 127 |
| abstract_inverted_index.sparse | 105 |
| abstract_inverted_index.attempt | 26 |
| abstract_inverted_index.beyond. | 217 |
| abstract_inverted_index.choice, | 138 |
| abstract_inverted_index.develop | 203 |
| abstract_inverted_index.disease | 79 |
| abstract_inverted_index.drawing | 16 |
| abstract_inverted_index.fields. | 11 |
| abstract_inverted_index.insight | 17 |
| abstract_inverted_index.medical | 72 |
| abstract_inverted_index.methods | 14, 29, 50, 100, 201 |
| abstract_inverted_index.numbers | 113 |
| abstract_inverted_index.optimal | 112 |
| abstract_inverted_index.process | 66 |
| abstract_inverted_index.propose | 46 |
| abstract_inverted_index.records | 73 |
| abstract_inverted_index.results | 181 |
| abstract_inverted_index.sampled | 1, 37, 104 |
| abstract_inverted_index.several | 90 |
| abstract_inverted_index.sources | 213 |
| abstract_inverted_index.tracked | 88 |
| abstract_inverted_index.typical | 13 |
| abstract_inverted_index.variety | 9 |
| abstract_inverted_index.aligning | 102 |
| abstract_inverted_index.clusters | 134 |
| abstract_inverted_index.disease, | 129 |
| abstract_inverted_index.medicine | 215 |
| abstract_inverted_index.moderate | 159 |
| abstract_inverted_index.patients | 75, 81, 186 |
| abstract_inverted_index.sparsely | 36 |
| abstract_inverted_index.spectral | 59 |
| abstract_inverted_index.alignment | 53 |
| abstract_inverted_index.clusters, | 115 |
| abstract_inverted_index.construct | 41 |
| abstract_inverted_index.different | 99, 111 |
| abstract_inverted_index.patients' | 191 |
| abstract_inverted_index.synthetic | 42, 118 |
| abstract_inverted_index.clustering | 31 |
| abstract_inverted_index.correspond | 143 |
| abstract_inverted_index.fluctuates | 163 |
| abstract_inverted_index.generalize | 28 |
| abstract_inverted_index.persistent | 175 |
| abstract_inverted_index.physicians | 184 |
| abstract_inverted_index.reasonable | 137 |
| abstract_inverted_index.subjective | 83 |
| abstract_inverted_index.understand | 188 |
| abstract_inverted_index.Irregularly | 0 |
| abstract_inverted_index.application | 57 |
| abstract_inverted_index.clustering. | 60 |
| abstract_inverted_index.experiences | 84, 158, 174 |
| abstract_inverted_index.irregularly | 34, 103 |
| abstract_inverted_index.properties. | 122 |
| abstract_inverted_index.occasionally | 151 |
| abstract_inverted_index.trajectories | 32 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |