CM-GAN: Image Inpainting with Cascaded Modulation GAN and Object-Aware Training Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2203.11947
Recent image inpainting methods have made great progress but often struggle to generate plausible image structures when dealing with large holes in complex images. This is partially due to the lack of effective network structures that can capture both the long-range dependency and high-level semantics of an image. We propose cascaded modulation GAN (CM-GAN), a new network design consisting of an encoder with Fourier convolution blocks that extract multi-scale feature representations from the input image with holes and a dual-stream decoder with a novel cascaded global-spatial modulation block at each scale level. In each decoder block, global modulation is first applied to perform coarse and semantic-aware structure synthesis, followed by spatial modulation to further adjust the feature map in a spatially adaptive fashion. In addition, we design an object-aware training scheme to prevent the network from hallucinating new objects inside holes, fulfilling the needs of object removal tasks in real-world scenarios. Extensive experiments are conducted to show that our method significantly outperforms existing methods in both quantitative and qualitative evaluation. Please refer to the project page: \url{https://github.com/htzheng/CM-GAN-Inpainting}.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2203.11947
- https://arxiv.org/pdf/2203.11947
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4221143459
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4221143459Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2203.11947Digital Object Identifier
- Title
-
CM-GAN: Image Inpainting with Cascaded Modulation GAN and Object-Aware TrainingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-22Full publication date if available
- Authors
-
Haitian Zheng, Zhe Lin, Jingwan Lu, Scott Cohen, Eli Shechtman, Connelly Barnes, Zhang, Jianming, Ning Xu, Sohrab Amirghodsi, Jiebo LuoList of authors in order
- Landing page
-
https://arxiv.org/abs/2203.11947Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2203.11947Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2203.11947Direct OA link when available
- Concepts
-
Inpainting, Computer science, Block (permutation group theory), Encoder, Feature (linguistics), Artificial intelligence, Modulation (music), Upsampling, Image (mathematics), Convolution (computer science), Computer vision, Object (grammar), Pattern recognition (psychology), Artificial neural network, Mathematics, Operating system, Geometry, Aesthetics, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4221143459 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2203.11947 |
| ids.doi | https://doi.org/10.48550/arxiv.2203.11947 |
| ids.openalex | https://openalex.org/W4221143459 |
| fwci | |
| type | preprint |
| title | CM-GAN: Image Inpainting with Cascaded Modulation GAN and Object-Aware Training |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13497 |
| topics[0].field.id | https://openalex.org/fields/12 |
| topics[0].field.display_name | Arts and Humanities |
| topics[0].score | 0.9879000186920166 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1211 |
| topics[0].subfield.display_name | Philosophy |
| topics[0].display_name | Hermeneutics and Narrative Identity |
| topics[1].id | https://openalex.org/T13695 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9749000072479248 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3600 |
| topics[1].subfield.display_name | General Health Professions |
| topics[1].display_name | Aging, Elder Care, and Social Issues |
| topics[2].id | https://openalex.org/T13099 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.95660001039505 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3600 |
| topics[2].subfield.display_name | General Health Professions |
| topics[2].display_name | Health, Medicine and Society |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C11727466 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7466285824775696 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1628157 |
| concepts[0].display_name | Inpainting |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7328105568885803 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2777210771 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6420321464538574 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q4927124 |
| concepts[2].display_name | Block (permutation group theory) |
| concepts[3].id | https://openalex.org/C118505674 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5953340530395508 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[3].display_name | Encoder |
| concepts[4].id | https://openalex.org/C2776401178 |
| concepts[4].level | 2 |
| concepts[4].score | 0.569674015045166 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[4].display_name | Feature (linguistics) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5644115209579468 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C123079801 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5595539808273315 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q750240 |
| concepts[6].display_name | Modulation (music) |
| concepts[7].id | https://openalex.org/C110384440 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5174767971038818 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1143270 |
| concepts[7].display_name | Upsampling |
| concepts[8].id | https://openalex.org/C115961682 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5091161131858826 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[8].display_name | Image (mathematics) |
| concepts[9].id | https://openalex.org/C45347329 |
| concepts[9].level | 3 |
| concepts[9].score | 0.5065456628799438 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5166604 |
| concepts[9].display_name | Convolution (computer science) |
| concepts[10].id | https://openalex.org/C31972630 |
| concepts[10].level | 1 |
| concepts[10].score | 0.47703713178634644 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[10].display_name | Computer vision |
| concepts[11].id | https://openalex.org/C2781238097 |
| concepts[11].level | 2 |
| concepts[11].score | 0.449384868144989 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[11].display_name | Object (grammar) |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3476244807243347 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C50644808 |
| concepts[13].level | 2 |
| concepts[13].score | 0.2623768150806427 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[13].display_name | Artificial neural network |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.10448586940765381 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C111919701 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[15].display_name | Operating system |
| concepts[16].id | https://openalex.org/C2524010 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[16].display_name | Geometry |
| concepts[17].id | https://openalex.org/C107038049 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q35986 |
| concepts[17].display_name | Aesthetics |
| concepts[18].id | https://openalex.org/C138885662 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[18].display_name | Philosophy |
| concepts[19].id | https://openalex.org/C41895202 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[19].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/inpainting |
| keywords[0].score | 0.7466285824775696 |
| keywords[0].display_name | Inpainting |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7328105568885803 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/block |
| keywords[2].score | 0.6420321464538574 |
| keywords[2].display_name | Block (permutation group theory) |
| keywords[3].id | https://openalex.org/keywords/encoder |
| keywords[3].score | 0.5953340530395508 |
| keywords[3].display_name | Encoder |
| keywords[4].id | https://openalex.org/keywords/feature |
| keywords[4].score | 0.569674015045166 |
| keywords[4].display_name | Feature (linguistics) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5644115209579468 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/modulation |
| keywords[6].score | 0.5595539808273315 |
| keywords[6].display_name | Modulation (music) |
| keywords[7].id | https://openalex.org/keywords/upsampling |
| keywords[7].score | 0.5174767971038818 |
| keywords[7].display_name | Upsampling |
| keywords[8].id | https://openalex.org/keywords/image |
| keywords[8].score | 0.5091161131858826 |
| keywords[8].display_name | Image (mathematics) |
| keywords[9].id | https://openalex.org/keywords/convolution |
| keywords[9].score | 0.5065456628799438 |
| keywords[9].display_name | Convolution (computer science) |
| keywords[10].id | https://openalex.org/keywords/computer-vision |
| keywords[10].score | 0.47703713178634644 |
| keywords[10].display_name | Computer vision |
| keywords[11].id | https://openalex.org/keywords/object |
| keywords[11].score | 0.449384868144989 |
| keywords[11].display_name | Object (grammar) |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.3476244807243347 |
| keywords[12].display_name | Pattern recognition (psychology) |
| keywords[13].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[13].score | 0.2623768150806427 |
| keywords[13].display_name | Artificial neural network |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.10448586940765381 |
| keywords[14].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2203.11947 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2203.11947 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2203.11947 |
| locations[1].id | doi:10.48550/arxiv.2203.11947 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2203.11947 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5016267591 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0415-1765 |
| authorships[0].author.display_name | Haitian Zheng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zheng, Haitian |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5024456511 |
| authorships[1].author.orcid | https://orcid.org/0009-0002-5244-4159 |
| authorships[1].author.display_name | Zhe Lin |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lin, Zhe |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5085050428 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3598-9918 |
| authorships[2].author.display_name | Jingwan Lu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lu, Jingwan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5055156362 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3459-6899 |
| authorships[3].author.display_name | Scott Cohen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Cohen, Scott |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5024777042 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6783-1795 |
| authorships[4].author.display_name | Eli Shechtman |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shechtman, Eli |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5083898813 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Connelly Barnes |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Barnes, Connelly |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Zhang, Jianming |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5068584522 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Ning Xu |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Xu, Ning |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5042253371 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Sohrab Amirghodsi |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Amirghodsi, Sohrab |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5055469774 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-4516-9729 |
| authorships[9].author.display_name | Jiebo Luo |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Luo, Jiebo |
| authorships[9].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2203.11947 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-04-03T00:00:00 |
| display_name | CM-GAN: Image Inpainting with Cascaded Modulation GAN and Object-Aware Training |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13497 |
| primary_topic.field.id | https://openalex.org/fields/12 |
| primary_topic.field.display_name | Arts and Humanities |
| primary_topic.score | 0.9879000186920166 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1211 |
| primary_topic.subfield.display_name | Philosophy |
| primary_topic.display_name | Hermeneutics and Narrative Identity |
| related_works | https://openalex.org/W3238102, https://openalex.org/W11424074, https://openalex.org/W13187899, https://openalex.org/W8340350, https://openalex.org/W2988963, https://openalex.org/W1660204, https://openalex.org/W11273282, https://openalex.org/W9871412, https://openalex.org/W12455713, https://openalex.org/W12239746 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2203.11947 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2203.11947 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2203.11947 |
| primary_location.id | pmh:oai:arXiv.org:2203.11947 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2203.11947 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2203.11947 |
| publication_date | 2022-03-22 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 54, 78, 82, 119 |
| abstract_inverted_index.In | 92, 123 |
| abstract_inverted_index.We | 48 |
| abstract_inverted_index.an | 46, 60, 127 |
| abstract_inverted_index.at | 88 |
| abstract_inverted_index.by | 109 |
| abstract_inverted_index.in | 21, 118, 148, 164 |
| abstract_inverted_index.is | 25, 98 |
| abstract_inverted_index.of | 31, 45, 59, 144 |
| abstract_inverted_index.to | 11, 28, 101, 112, 131, 155, 172 |
| abstract_inverted_index.we | 125 |
| abstract_inverted_index.GAN | 52 |
| abstract_inverted_index.and | 42, 77, 104, 167 |
| abstract_inverted_index.are | 153 |
| abstract_inverted_index.but | 8 |
| abstract_inverted_index.can | 36 |
| abstract_inverted_index.due | 27 |
| abstract_inverted_index.map | 117 |
| abstract_inverted_index.new | 55, 137 |
| abstract_inverted_index.our | 158 |
| abstract_inverted_index.the | 29, 39, 72, 115, 133, 142, 173 |
| abstract_inverted_index.This | 24 |
| abstract_inverted_index.both | 38, 165 |
| abstract_inverted_index.each | 89, 93 |
| abstract_inverted_index.from | 71, 135 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.lack | 30 |
| abstract_inverted_index.made | 5 |
| abstract_inverted_index.show | 156 |
| abstract_inverted_index.that | 35, 66, 157 |
| abstract_inverted_index.when | 16 |
| abstract_inverted_index.with | 18, 62, 75, 81 |
| abstract_inverted_index.block | 87 |
| abstract_inverted_index.first | 99 |
| abstract_inverted_index.great | 6 |
| abstract_inverted_index.holes | 20, 76 |
| abstract_inverted_index.image | 1, 14, 74 |
| abstract_inverted_index.input | 73 |
| abstract_inverted_index.large | 19 |
| abstract_inverted_index.needs | 143 |
| abstract_inverted_index.novel | 83 |
| abstract_inverted_index.often | 9 |
| abstract_inverted_index.page: | 175 |
| abstract_inverted_index.refer | 171 |
| abstract_inverted_index.scale | 90 |
| abstract_inverted_index.tasks | 147 |
| abstract_inverted_index.Please | 170 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.adjust | 114 |
| abstract_inverted_index.block, | 95 |
| abstract_inverted_index.blocks | 65 |
| abstract_inverted_index.coarse | 103 |
| abstract_inverted_index.design | 57, 126 |
| abstract_inverted_index.global | 96 |
| abstract_inverted_index.holes, | 140 |
| abstract_inverted_index.image. | 47 |
| abstract_inverted_index.inside | 139 |
| abstract_inverted_index.level. | 91 |
| abstract_inverted_index.method | 159 |
| abstract_inverted_index.object | 145 |
| abstract_inverted_index.scheme | 130 |
| abstract_inverted_index.Fourier | 63 |
| abstract_inverted_index.applied | 100 |
| abstract_inverted_index.capture | 37 |
| abstract_inverted_index.complex | 22 |
| abstract_inverted_index.dealing | 17 |
| abstract_inverted_index.decoder | 80, 94 |
| abstract_inverted_index.encoder | 61 |
| abstract_inverted_index.extract | 67 |
| abstract_inverted_index.feature | 69, 116 |
| abstract_inverted_index.further | 113 |
| abstract_inverted_index.images. | 23 |
| abstract_inverted_index.methods | 3, 163 |
| abstract_inverted_index.network | 33, 56, 134 |
| abstract_inverted_index.objects | 138 |
| abstract_inverted_index.perform | 102 |
| abstract_inverted_index.prevent | 132 |
| abstract_inverted_index.project | 174 |
| abstract_inverted_index.propose | 49 |
| abstract_inverted_index.removal | 146 |
| abstract_inverted_index.spatial | 110 |
| abstract_inverted_index.adaptive | 121 |
| abstract_inverted_index.cascaded | 50, 84 |
| abstract_inverted_index.existing | 162 |
| abstract_inverted_index.fashion. | 122 |
| abstract_inverted_index.followed | 108 |
| abstract_inverted_index.generate | 12 |
| abstract_inverted_index.progress | 7 |
| abstract_inverted_index.struggle | 10 |
| abstract_inverted_index.training | 129 |
| abstract_inverted_index.(CM-GAN), | 53 |
| abstract_inverted_index.Extensive | 151 |
| abstract_inverted_index.addition, | 124 |
| abstract_inverted_index.conducted | 154 |
| abstract_inverted_index.effective | 32 |
| abstract_inverted_index.partially | 26 |
| abstract_inverted_index.plausible | 13 |
| abstract_inverted_index.semantics | 44 |
| abstract_inverted_index.spatially | 120 |
| abstract_inverted_index.structure | 106 |
| abstract_inverted_index.consisting | 58 |
| abstract_inverted_index.dependency | 41 |
| abstract_inverted_index.fulfilling | 141 |
| abstract_inverted_index.high-level | 43 |
| abstract_inverted_index.inpainting | 2 |
| abstract_inverted_index.long-range | 40 |
| abstract_inverted_index.modulation | 51, 86, 97, 111 |
| abstract_inverted_index.real-world | 149 |
| abstract_inverted_index.scenarios. | 150 |
| abstract_inverted_index.structures | 15, 34 |
| abstract_inverted_index.synthesis, | 107 |
| abstract_inverted_index.convolution | 64 |
| abstract_inverted_index.dual-stream | 79 |
| abstract_inverted_index.evaluation. | 169 |
| abstract_inverted_index.experiments | 152 |
| abstract_inverted_index.multi-scale | 68 |
| abstract_inverted_index.outperforms | 161 |
| abstract_inverted_index.qualitative | 168 |
| abstract_inverted_index.object-aware | 128 |
| abstract_inverted_index.quantitative | 166 |
| abstract_inverted_index.hallucinating | 136 |
| abstract_inverted_index.significantly | 160 |
| abstract_inverted_index.global-spatial | 85 |
| abstract_inverted_index.semantic-aware | 105 |
| abstract_inverted_index.representations | 70 |
| abstract_inverted_index.\url{https://github.com/htzheng/CM-GAN-Inpainting}. | 176 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile |