CMG-Net: Robust Normal Estimation for Point Clouds via Chamfer Normal Distance and Multi-Scale Geometry Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1609/aaai.v38i6.28434
This work presents an accurate and robust method for estimating normals from point clouds. In contrast to predecessor approaches that minimize the deviations between the annotated and the predicted normals directly, leading to direction inconsistency, we first propose a new metric termed Chamfer Normal Distance to address this issue. This not only mitigates the challenge but also facilitates network training and substantially enhances the network robustness against noise. Subsequently, we devise an innovative architecture that encompasses Multi-scale Local Feature Aggregation and Hierarchical Geometric Information Fusion. This design empowers the network to capture intricate geometric details more effectively and alleviate the ambiguity in scale selection. Extensive experiments demonstrate that our method achieves the state-of-the-art performance on both synthetic and real-world datasets, particularly in scenarios contaminated by noise. Our implementation is available at https://github.com/YingruiWoo/CMG-Net_Pytorch.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1609/aaai.v38i6.28434
- https://ojs.aaai.org/index.php/AAAI/article/download/28434/28846
- OA Status
- diamond
- Cited By
- 8
- References
- 61
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393153732
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393153732Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1609/aaai.v38i6.28434Digital Object Identifier
- Title
-
CMG-Net: Robust Normal Estimation for Point Clouds via Chamfer Normal Distance and Multi-Scale GeometryWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-24Full publication date if available
- Authors
-
Yingrui Wu, Mingyang Zhao, Keqiang Li, Weize Quan, Tianqi Yu, Jianfeng Yang, Xiaohong Jia, Dong‐Ming YanList of authors in order
- Landing page
-
https://doi.org/10.1609/aaai.v38i6.28434Publisher landing page
- PDF URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/28434/28846Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/28434/28846Direct OA link when available
- Concepts
-
Chamfer (geometry), Geometry, Point cloud, Scale (ratio), Net (polyhedron), Mathematics, Computer science, Physics, Artificial intelligence, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
61Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393153732 |
|---|---|
| doi | https://doi.org/10.1609/aaai.v38i6.28434 |
| ids.doi | https://doi.org/10.1609/aaai.v38i6.28434 |
| ids.openalex | https://openalex.org/W4393153732 |
| fwci | 7.19230766 |
| type | article |
| title | CMG-Net: Robust Normal Estimation for Point Clouds via Chamfer Normal Distance and Multi-Scale Geometry |
| biblio.issue | 6 |
| biblio.volume | 38 |
| biblio.last_page | 6179 |
| biblio.first_page | 6171 |
| topics[0].id | https://openalex.org/T10719 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | 3D Shape Modeling and Analysis |
| topics[1].id | https://openalex.org/T14339 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9945999979972839 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image Processing and 3D Reconstruction |
| topics[2].id | https://openalex.org/T10481 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9836000204086304 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1704 |
| topics[2].subfield.display_name | Computer Graphics and Computer-Aided Design |
| topics[2].display_name | Computer Graphics and Visualization Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776313386 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6458930969238281 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q18018756 |
| concepts[0].display_name | Chamfer (geometry) |
| concepts[1].id | https://openalex.org/C2524010 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6396628618240356 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[1].display_name | Geometry |
| concepts[2].id | https://openalex.org/C131979681 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6287429332733154 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1899648 |
| concepts[2].display_name | Point cloud |
| concepts[3].id | https://openalex.org/C2778755073 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5854819416999817 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[3].display_name | Scale (ratio) |
| concepts[4].id | https://openalex.org/C14166107 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5486106872558594 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q253829 |
| concepts[4].display_name | Net (polyhedron) |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4454277753829956 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3320184648036957 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C121332964 |
| concepts[7].level | 0 |
| concepts[7].score | 0.27232587337493896 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[7].display_name | Physics |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.27112501859664917 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C62520636 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[9].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/chamfer |
| keywords[0].score | 0.6458930969238281 |
| keywords[0].display_name | Chamfer (geometry) |
| keywords[1].id | https://openalex.org/keywords/geometry |
| keywords[1].score | 0.6396628618240356 |
| keywords[1].display_name | Geometry |
| keywords[2].id | https://openalex.org/keywords/point-cloud |
| keywords[2].score | 0.6287429332733154 |
| keywords[2].display_name | Point cloud |
| keywords[3].id | https://openalex.org/keywords/scale |
| keywords[3].score | 0.5854819416999817 |
| keywords[3].display_name | Scale (ratio) |
| keywords[4].id | https://openalex.org/keywords/net |
| keywords[4].score | 0.5486106872558594 |
| keywords[4].display_name | Net (polyhedron) |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.4454277753829956 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.3320184648036957 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/physics |
| keywords[7].score | 0.27232587337493896 |
| keywords[7].display_name | Physics |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.27112501859664917 |
| keywords[8].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1609/aaai.v38i6.28434 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191458 |
| locations[0].source.issn | 2159-5399, 2374-3468 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2159-5399 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| locations[0].license | |
| locations[0].pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/28434/28846 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1609/aaai.v38i6.28434 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5025356381 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yingrui Wu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210112150, https://openalex.org/I4210165038 |
| authorships[0].affiliations[0].raw_affiliation_string | MAIS, Institute of Automation, Chinese Academy of Sciences University of Chinese Academy of Sciences, Beijing, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210112150 |
| authorships[0].institutions[0].ror | https://ror.org/022c3hy66 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210112150 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Institute of Automation |
| authorships[0].institutions[1].id | https://openalex.org/I4210165038 |
| authorships[0].institutions[1].ror | https://ror.org/05qbk4x57 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165038 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | University of Chinese Academy of Sciences |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yingrui Wu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | MAIS, Institute of Automation, Chinese Academy of Sciences University of Chinese Academy of Sciences, Beijing, China |
| authorships[1].author.id | https://openalex.org/A5114949187 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6953-9731 |
| authorships[1].author.display_name | Mingyang Zhao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210085920 |
| authorships[1].affiliations[0].raw_affiliation_string | Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China |
| authorships[1].institutions[0].id | https://openalex.org/I19820366 |
| authorships[1].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[1].institutions[1].id | https://openalex.org/I4210085920 |
| authorships[1].institutions[1].ror | https://ror.org/004srxn73 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210085920 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Shanghai Institute for Science of Science |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mingyang Zhao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China |
| authorships[2].author.id | https://openalex.org/A5031855986 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9333-7416 |
| authorships[2].author.display_name | Keqiang Li |
| authorships[2].countries | HK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210128910 |
| authorships[2].affiliations[0].raw_affiliation_string | SenseTime Research, Shanghai, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210128910 |
| authorships[2].institutions[0].ror | https://ror.org/036wd5777 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210128910 |
| authorships[2].institutions[0].country_code | HK |
| authorships[2].institutions[0].display_name | Group Sense (China) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Keqiang Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | SenseTime Research, Shanghai, China |
| authorships[3].author.id | https://openalex.org/A5045242540 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0892-581X |
| authorships[3].author.display_name | Weize Quan |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210112150, https://openalex.org/I4210165038 |
| authorships[3].affiliations[0].raw_affiliation_string | MAIS, Institute of Automation, Chinese Academy of Sciences University of Chinese Academy of Sciences, Beijing, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210112150 |
| authorships[3].institutions[0].ror | https://ror.org/022c3hy66 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210112150 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Institute of Automation |
| authorships[3].institutions[1].id | https://openalex.org/I4210165038 |
| authorships[3].institutions[1].ror | https://ror.org/05qbk4x57 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165038 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | University of Chinese Academy of Sciences |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Weize Quan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | MAIS, Institute of Automation, Chinese Academy of Sciences University of Chinese Academy of Sciences, Beijing, China |
| authorships[4].author.id | https://openalex.org/A5072355923 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4122-4348 |
| authorships[4].author.display_name | Tianqi Yu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I3923682 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Electronic and Information Engineering, Soochow University, Suzhou, China |
| authorships[4].institutions[0].id | https://openalex.org/I3923682 |
| authorships[4].institutions[0].ror | https://ror.org/05t8y2r12 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I3923682 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Soochow University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Tianqi Yu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Electronic and Information Engineering, Soochow University, Suzhou, China |
| authorships[5].author.id | https://openalex.org/A5026142247 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3486-9604 |
| authorships[5].author.display_name | Jianfeng Yang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I3923682 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Electronic and Information Engineering, Soochow University, Suzhou, China |
| authorships[5].institutions[0].id | https://openalex.org/I3923682 |
| authorships[5].institutions[0].ror | https://ror.org/05t8y2r12 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I3923682 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Soochow University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jianfeng Yang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Electronic and Information Engineering, Soochow University, Suzhou, China |
| authorships[6].author.id | https://openalex.org/A5075570681 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6206-3216 |
| authorships[6].author.display_name | Xiaohong Jia |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210165038 |
| authorships[6].affiliations[0].raw_affiliation_string | AMSS, Chinese Academy of Sciences University of Chinese Academy of Sciences, Beijing, China |
| authorships[6].institutions[0].id | https://openalex.org/I4210165038 |
| authorships[6].institutions[0].ror | https://ror.org/05qbk4x57 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165038 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | University of Chinese Academy of Sciences |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Xiaohong Jia |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | AMSS, Chinese Academy of Sciences University of Chinese Academy of Sciences, Beijing, China |
| authorships[7].author.id | https://openalex.org/A5003969300 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-2209-2404 |
| authorships[7].author.display_name | Dong‐Ming Yan |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210112150, https://openalex.org/I4210165038 |
| authorships[7].affiliations[0].raw_affiliation_string | MAIS, Institute of Automation, Chinese Academy of Sciences University of Chinese Academy of Sciences, Beijing, China |
| authorships[7].institutions[0].id | https://openalex.org/I4210112150 |
| authorships[7].institutions[0].ror | https://ror.org/022c3hy66 |
| authorships[7].institutions[0].type | facility |
| authorships[7].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210112150 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Institute of Automation |
| authorships[7].institutions[1].id | https://openalex.org/I4210165038 |
| authorships[7].institutions[1].ror | https://ror.org/05qbk4x57 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165038 |
| authorships[7].institutions[1].country_code | CN |
| authorships[7].institutions[1].display_name | University of Chinese Academy of Sciences |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Dong-Ming Yan |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | MAIS, Institute of Automation, Chinese Academy of Sciences University of Chinese Academy of Sciences, Beijing, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ojs.aaai.org/index.php/AAAI/article/download/28434/28846 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | CMG-Net: Robust Normal Estimation for Point Clouds via Chamfer Normal Distance and Multi-Scale Geometry |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10719 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | 3D Shape Modeling and Analysis |
| related_works | https://openalex.org/W2088651759, https://openalex.org/W2134508677, https://openalex.org/W4324094550, https://openalex.org/W2054153498, https://openalex.org/W4381747464, https://openalex.org/W4307266377, https://openalex.org/W1993689898, https://openalex.org/W4317376074, https://openalex.org/W2023549875, https://openalex.org/W3161970574 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1609/aaai.v38i6.28434 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191458 |
| best_oa_location.source.issn | 2159-5399, 2374-3468 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2159-5399 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/28434/28846 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1609/aaai.v38i6.28434 |
| primary_location.id | doi:10.1609/aaai.v38i6.28434 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191458 |
| primary_location.source.issn | 2159-5399, 2374-3468 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2159-5399 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| primary_location.license | |
| primary_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/28434/28846 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1609/aaai.v38i6.28434 |
| publication_date | 2024-03-24 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W1560043530, https://openalex.org/W6657770449, https://openalex.org/W2758463634, https://openalex.org/W1986465719, https://openalex.org/W2499836513, https://openalex.org/W3126922312, https://openalex.org/W2052790699, https://openalex.org/W2790597870, https://openalex.org/W4361865837, https://openalex.org/W2058524213, https://openalex.org/W2591119809, https://openalex.org/W6650312217, https://openalex.org/W4320833442, https://openalex.org/W2964537492, https://openalex.org/W6675167734, https://openalex.org/W6750484095, https://openalex.org/W6652231383, https://openalex.org/W6779704201, https://openalex.org/W6653559471, https://openalex.org/W4288055710, https://openalex.org/W4376166987, https://openalex.org/W4306311944, https://openalex.org/W4310560219, https://openalex.org/W3018015404, https://openalex.org/W6784053306, https://openalex.org/W2112477742, https://openalex.org/W2950642167, https://openalex.org/W2624503621, https://openalex.org/W4221149978, https://openalex.org/W3081341652, https://openalex.org/W2799893270, https://openalex.org/W6801748765, https://openalex.org/W6788305448, https://openalex.org/W3034261725, https://openalex.org/W4210368713, https://openalex.org/W3202721042, https://openalex.org/W3187580431, https://openalex.org/W3022095505, https://openalex.org/W2012876210, https://openalex.org/W4386072280, https://openalex.org/W4229976114, https://openalex.org/W3101395346, https://openalex.org/W4226373316, https://openalex.org/W4382465742, https://openalex.org/W3199435047, https://openalex.org/W3204661630, https://openalex.org/W2963515086, https://openalex.org/W4312578244, https://openalex.org/W3091189374, https://openalex.org/W4386065418, https://openalex.org/W2008073424, https://openalex.org/W4246759387, https://openalex.org/W2795374598, https://openalex.org/W3035542908, https://openalex.org/W4250374778, https://openalex.org/W2998115525, https://openalex.org/W4294924608, https://openalex.org/W2963121255, https://openalex.org/W2560609797, https://openalex.org/W2052202553, https://openalex.org/W2908510526 |
| referenced_works_count | 61 |
| abstract_inverted_index.a | 38 |
| abstract_inverted_index.In | 14 |
| abstract_inverted_index.an | 3, 71 |
| abstract_inverted_index.at | 130 |
| abstract_inverted_index.by | 124 |
| abstract_inverted_index.in | 101, 121 |
| abstract_inverted_index.is | 128 |
| abstract_inverted_index.on | 114 |
| abstract_inverted_index.to | 16, 32, 45, 90 |
| abstract_inverted_index.we | 35, 69 |
| abstract_inverted_index.Our | 126 |
| abstract_inverted_index.and | 5, 26, 60, 80, 97, 117 |
| abstract_inverted_index.but | 55 |
| abstract_inverted_index.for | 8 |
| abstract_inverted_index.new | 39 |
| abstract_inverted_index.not | 50 |
| abstract_inverted_index.our | 108 |
| abstract_inverted_index.the | 21, 24, 27, 53, 63, 88, 99, 111 |
| abstract_inverted_index.This | 0, 49, 85 |
| abstract_inverted_index.also | 56 |
| abstract_inverted_index.both | 115 |
| abstract_inverted_index.from | 11 |
| abstract_inverted_index.more | 95 |
| abstract_inverted_index.only | 51 |
| abstract_inverted_index.that | 19, 74, 107 |
| abstract_inverted_index.this | 47 |
| abstract_inverted_index.work | 1 |
| abstract_inverted_index.Local | 77 |
| abstract_inverted_index.first | 36 |
| abstract_inverted_index.point | 12 |
| abstract_inverted_index.scale | 102 |
| abstract_inverted_index.Normal | 43 |
| abstract_inverted_index.design | 86 |
| abstract_inverted_index.devise | 70 |
| abstract_inverted_index.issue. | 48 |
| abstract_inverted_index.method | 7, 109 |
| abstract_inverted_index.metric | 40 |
| abstract_inverted_index.noise. | 67, 125 |
| abstract_inverted_index.robust | 6 |
| abstract_inverted_index.termed | 41 |
| abstract_inverted_index.Chamfer | 42 |
| abstract_inverted_index.Feature | 78 |
| abstract_inverted_index.Fusion. | 84 |
| abstract_inverted_index.address | 46 |
| abstract_inverted_index.against | 66 |
| abstract_inverted_index.between | 23 |
| abstract_inverted_index.capture | 91 |
| abstract_inverted_index.clouds. | 13 |
| abstract_inverted_index.details | 94 |
| abstract_inverted_index.leading | 31 |
| abstract_inverted_index.network | 58, 64, 89 |
| abstract_inverted_index.normals | 10, 29 |
| abstract_inverted_index.propose | 37 |
| abstract_inverted_index.Distance | 44 |
| abstract_inverted_index.accurate | 4 |
| abstract_inverted_index.achieves | 110 |
| abstract_inverted_index.contrast | 15 |
| abstract_inverted_index.empowers | 87 |
| abstract_inverted_index.enhances | 62 |
| abstract_inverted_index.minimize | 20 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.training | 59 |
| abstract_inverted_index.Extensive | 104 |
| abstract_inverted_index.Geometric | 82 |
| abstract_inverted_index.alleviate | 98 |
| abstract_inverted_index.ambiguity | 100 |
| abstract_inverted_index.annotated | 25 |
| abstract_inverted_index.available | 129 |
| abstract_inverted_index.challenge | 54 |
| abstract_inverted_index.datasets, | 119 |
| abstract_inverted_index.direction | 33 |
| abstract_inverted_index.directly, | 30 |
| abstract_inverted_index.geometric | 93 |
| abstract_inverted_index.intricate | 92 |
| abstract_inverted_index.mitigates | 52 |
| abstract_inverted_index.predicted | 28 |
| abstract_inverted_index.scenarios | 122 |
| abstract_inverted_index.synthetic | 116 |
| abstract_inverted_index.approaches | 18 |
| abstract_inverted_index.deviations | 22 |
| abstract_inverted_index.estimating | 9 |
| abstract_inverted_index.innovative | 72 |
| abstract_inverted_index.real-world | 118 |
| abstract_inverted_index.robustness | 65 |
| abstract_inverted_index.selection. | 103 |
| abstract_inverted_index.Aggregation | 79 |
| abstract_inverted_index.Information | 83 |
| abstract_inverted_index.Multi-scale | 76 |
| abstract_inverted_index.demonstrate | 106 |
| abstract_inverted_index.effectively | 96 |
| abstract_inverted_index.encompasses | 75 |
| abstract_inverted_index.experiments | 105 |
| abstract_inverted_index.facilitates | 57 |
| abstract_inverted_index.performance | 113 |
| abstract_inverted_index.predecessor | 17 |
| abstract_inverted_index.Hierarchical | 81 |
| abstract_inverted_index.architecture | 73 |
| abstract_inverted_index.contaminated | 123 |
| abstract_inverted_index.particularly | 120 |
| abstract_inverted_index.Subsequently, | 68 |
| abstract_inverted_index.substantially | 61 |
| abstract_inverted_index.implementation | 127 |
| abstract_inverted_index.inconsistency, | 34 |
| abstract_inverted_index.state-of-the-art | 112 |
| abstract_inverted_index.https://github.com/YingruiWoo/CMG-Net_Pytorch. | 131 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.5799999833106995 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.94535519 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |