CMNet: Contrastive Magnification Network for Micro-Expression Recognition Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1609/aaai.v37i1.25083
Micro-Expression Recognition (MER) is challenging because the Micro-Expressions' (ME) motion is too weak to distinguish. This hurdle can be tackled by enhancing intensity for a more accurate acquisition of movements. However, existing magnification strategies tend to use the features of facial images that include not only intensity clues as intensity features, leading to the intensity representation deficient of credibility. In addition, the intensity variation over time, which is crucial for encoding movements, is also neglected. To this end, we provide a reliable scheme to extract intensity clues while considering their variation on the time scale. First, we devise an Intensity Distillation (ID) loss to acquire the intensity clues by contrasting the difference between frames, given that the difference in the same video lies only in the intensity. Then, the intensity clues are calibrated to follow the trend of the original video. Specifically, due to the lack of truth intensity annotation of the original video, we build the intensity tendency by setting each intensity vacancy an uncertain value, which guides the extracted intensity clues to converge towards this trend rather some fixed values. A Wilcoxon rank sum test (Wrst) method is enforced to implement the calibration. Experimental results on three public ME databases i.e. CASME II, SAMM, and SMIC-HS validate the superiority against state-of-the-art methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1609/aaai.v37i1.25083
- https://ojs.aaai.org/index.php/AAAI/article/download/25083/24855
- OA Status
- diamond
- Cited By
- 8
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4382240667
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4382240667Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1609/aaai.v37i1.25083Digital Object Identifier
- Title
-
CMNet: Contrastive Magnification Network for Micro-Expression RecognitionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-26Full publication date if available
- Authors
-
Mengting Wei, Xingxun Jiang, Wenming Zheng, Yuan Zong, Cheng Lu, Jiateng LiuList of authors in order
- Landing page
-
https://doi.org/10.1609/aaai.v37i1.25083Publisher landing page
- PDF URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/25083/24855Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/25083/24855Direct OA link when available
- Concepts
-
Intensity (physics), Computer science, Intensity mapping, Artificial intelligence, Magnification, Pattern recognition (psychology), Optics, Redshift, Physics, Galaxy, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4382240667 |
|---|---|
| doi | https://doi.org/10.1609/aaai.v37i1.25083 |
| ids.doi | https://doi.org/10.1609/aaai.v37i1.25083 |
| ids.openalex | https://openalex.org/W4382240667 |
| fwci | 9.57377047 |
| type | article |
| title | CMNet: Contrastive Magnification Network for Micro-Expression Recognition |
| biblio.issue | 1 |
| biblio.volume | 37 |
| biblio.last_page | 127 |
| biblio.first_page | 119 |
| topics[0].id | https://openalex.org/T13731 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.9749000072479248 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3322 |
| topics[0].subfield.display_name | Urban Studies |
| topics[0].display_name | Advanced Computing and Algorithms |
| topics[1].id | https://openalex.org/T12994 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9623000025749207 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Infrared Thermography in Medicine |
| topics[2].id | https://openalex.org/T11398 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.95169997215271 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1709 |
| topics[2].subfield.display_name | Human-Computer Interaction |
| topics[2].display_name | Hand Gesture Recognition Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C93038891 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7573118209838867 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1061524 |
| concepts[0].display_name | Intensity (physics) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6122474074363708 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2777967070 |
| concepts[2].level | 4 |
| concepts[2].score | 0.5668268203735352 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q18208114 |
| concepts[2].display_name | Intensity mapping |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.49843597412109375 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C4144372 |
| concepts[4].level | 2 |
| concepts[4].score | 0.45533815026283264 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q675287 |
| concepts[4].display_name | Magnification |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.38243377208709717 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C120665830 |
| concepts[6].level | 1 |
| concepts[6].score | 0.09488722681999207 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[6].display_name | Optics |
| concepts[7].id | https://openalex.org/C33024259 |
| concepts[7].level | 3 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q76250 |
| concepts[7].display_name | Redshift |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C98444146 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q318 |
| concepts[9].display_name | Galaxy |
| concepts[10].id | https://openalex.org/C62520636 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[10].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/intensity |
| keywords[0].score | 0.7573118209838867 |
| keywords[0].display_name | Intensity (physics) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6122474074363708 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/intensity-mapping |
| keywords[2].score | 0.5668268203735352 |
| keywords[2].display_name | Intensity mapping |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.49843597412109375 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/magnification |
| keywords[4].score | 0.45533815026283264 |
| keywords[4].display_name | Magnification |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.38243377208709717 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/optics |
| keywords[6].score | 0.09488722681999207 |
| keywords[6].display_name | Optics |
| language | en |
| locations[0].id | doi:10.1609/aaai.v37i1.25083 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191458 |
| locations[0].source.issn | 2159-5399, 2374-3468 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2159-5399 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| locations[0].license | |
| locations[0].pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/25083/24855 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1609/aaai.v37i1.25083 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5086663641 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5235-225X |
| authorships[0].author.display_name | Mengting Wei |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I76569877 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory of Child Development and Learning Science of Ministry of Education School of Biological Science and Medical Engineering, Southeast University, Nanjing, China |
| authorships[0].institutions[0].id | https://openalex.org/I76569877 |
| authorships[0].institutions[0].ror | https://ror.org/04ct4d772 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I76569877 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Southeast University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mengting Wei |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Key Laboratory of Child Development and Learning Science of Ministry of Education School of Biological Science and Medical Engineering, Southeast University, Nanjing, China |
| authorships[1].author.id | https://openalex.org/A5028139864 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2139-8623 |
| authorships[1].author.display_name | Xingxun Jiang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I76569877 |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory of Child Development and Learning Science of Ministry of Education School of Biological Science and Medical Engineering, Southeast University, Nanjing, China |
| authorships[1].institutions[0].id | https://openalex.org/I76569877 |
| authorships[1].institutions[0].ror | https://ror.org/04ct4d772 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I76569877 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Southeast University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xingxun Jiang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Key Laboratory of Child Development and Learning Science of Ministry of Education School of Biological Science and Medical Engineering, Southeast University, Nanjing, China |
| authorships[2].author.id | https://openalex.org/A5029771864 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7764-5179 |
| authorships[2].author.display_name | Wenming Zheng |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1327237609 |
| authorships[2].affiliations[0].raw_affiliation_string | Key Laboratory of Child Development and Learning Science of Ministry of Education |
| authorships[2].institutions[0].id | https://openalex.org/I1327237609 |
| authorships[2].institutions[0].ror | https://ror.org/01mv9t934 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I1327237609, https://openalex.org/I4210127390 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Ministry of Education of the People's Republic of China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wenming Zheng |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Key Laboratory of Child Development and Learning Science of Ministry of Education |
| authorships[3].author.id | https://openalex.org/A5027316177 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0839-8792 |
| authorships[3].author.display_name | Yuan Zong |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1327237609 |
| authorships[3].affiliations[0].raw_affiliation_string | Key Laboratory of Child Development and Learning Science of Ministry of Education |
| authorships[3].institutions[0].id | https://openalex.org/I1327237609 |
| authorships[3].institutions[0].ror | https://ror.org/01mv9t934 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I1327237609, https://openalex.org/I4210127390 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Ministry of Education of the People's Republic of China |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yuan Zong |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Key Laboratory of Child Development and Learning Science of Ministry of Education |
| authorships[4].author.id | https://openalex.org/A5054796879 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1477-1020 |
| authorships[4].author.display_name | Cheng Lu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I76569877 |
| authorships[4].affiliations[0].raw_affiliation_string | Key Laboratory of Child Development and Learning Science of Ministry of Education School of Information Science and Engineering, Southeast University, Nanjing, China |
| authorships[4].institutions[0].id | https://openalex.org/I76569877 |
| authorships[4].institutions[0].ror | https://ror.org/04ct4d772 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I76569877 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Southeast University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Cheng Lu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Key Laboratory of Child Development and Learning Science of Ministry of Education School of Information Science and Engineering, Southeast University, Nanjing, China |
| authorships[5].author.id | https://openalex.org/A5075297564 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2974-5802 |
| authorships[5].author.display_name | Jiateng Liu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I76569877 |
| authorships[5].affiliations[0].raw_affiliation_string | Key Laboratory of Child Development and Learning Science of Ministry of Education School of Biological Science and Medical Engineering, Southeast University, Nanjing, China |
| authorships[5].institutions[0].id | https://openalex.org/I76569877 |
| authorships[5].institutions[0].ror | https://ror.org/04ct4d772 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I76569877 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Southeast University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Jiateng Liu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Key Laboratory of Child Development and Learning Science of Ministry of Education School of Biological Science and Medical Engineering, Southeast University, Nanjing, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ojs.aaai.org/index.php/AAAI/article/download/25083/24855 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | CMNet: Contrastive Magnification Network for Micro-Expression Recognition |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13731 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.9749000072479248 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3322 |
| primary_topic.subfield.display_name | Urban Studies |
| primary_topic.display_name | Advanced Computing and Algorithms |
| related_works | https://openalex.org/W2041117173, https://openalex.org/W4256609757, https://openalex.org/W2152595177, https://openalex.org/W1810141276, https://openalex.org/W2005715326, https://openalex.org/W2033914206, https://openalex.org/W2042327336, https://openalex.org/W2203307634, https://openalex.org/W1984564022, https://openalex.org/W1539868565 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1609/aaai.v37i1.25083 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191458 |
| best_oa_location.source.issn | 2159-5399, 2374-3468 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2159-5399 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/25083/24855 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1609/aaai.v37i1.25083 |
| primary_location.id | doi:10.1609/aaai.v37i1.25083 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191458 |
| primary_location.source.issn | 2159-5399, 2374-3468 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2159-5399 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| primary_location.license | |
| primary_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/25083/24855 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1609/aaai.v37i1.25083 |
| publication_date | 2023-06-26 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3194352463, https://openalex.org/W6761091710, https://openalex.org/W2949662773, https://openalex.org/W2426188534, https://openalex.org/W6776700526, https://openalex.org/W2527254703, https://openalex.org/W6634373223, https://openalex.org/W2805056734, https://openalex.org/W2406432402, https://openalex.org/W3182710365, https://openalex.org/W3092753574, https://openalex.org/W2044106642, https://openalex.org/W4281477025, https://openalex.org/W1972978214, https://openalex.org/W3100951556, https://openalex.org/W2996310233, https://openalex.org/W2808064875, https://openalex.org/W4224942959, https://openalex.org/W4295884636, https://openalex.org/W6639213037, https://openalex.org/W2910652840, https://openalex.org/W2909115907, https://openalex.org/W2006426145, https://openalex.org/W2072038603, https://openalex.org/W3016260756, https://openalex.org/W2795270851, https://openalex.org/W2949258649, https://openalex.org/W1991467301, https://openalex.org/W3026092005, https://openalex.org/W2964606879, https://openalex.org/W2891138649, https://openalex.org/W3093000000, https://openalex.org/W4362223627, https://openalex.org/W4287812705 |
| referenced_works_count | 34 |
| abstract_inverted_index.A | 182 |
| abstract_inverted_index.a | 24, 80 |
| abstract_inverted_index.In | 59 |
| abstract_inverted_index.ME | 200 |
| abstract_inverted_index.To | 75 |
| abstract_inverted_index.an | 98, 164 |
| abstract_inverted_index.as | 48 |
| abstract_inverted_index.be | 18 |
| abstract_inverted_index.by | 20, 108, 159 |
| abstract_inverted_index.in | 118, 124 |
| abstract_inverted_index.is | 3, 10, 67, 72, 189 |
| abstract_inverted_index.of | 28, 39, 57, 137, 146, 150 |
| abstract_inverted_index.on | 91, 197 |
| abstract_inverted_index.to | 13, 35, 52, 83, 103, 133, 143, 173, 191 |
| abstract_inverted_index.we | 78, 96, 154 |
| abstract_inverted_index.II, | 204 |
| abstract_inverted_index.and | 206 |
| abstract_inverted_index.are | 131 |
| abstract_inverted_index.can | 17 |
| abstract_inverted_index.due | 142 |
| abstract_inverted_index.for | 23, 69 |
| abstract_inverted_index.not | 44 |
| abstract_inverted_index.sum | 185 |
| abstract_inverted_index.the | 6, 37, 53, 61, 92, 105, 110, 116, 119, 125, 128, 135, 138, 144, 151, 156, 169, 193, 209 |
| abstract_inverted_index.too | 11 |
| abstract_inverted_index.use | 36 |
| abstract_inverted_index.(ID) | 101 |
| abstract_inverted_index.(ME) | 8 |
| abstract_inverted_index.This | 15 |
| abstract_inverted_index.also | 73 |
| abstract_inverted_index.each | 161 |
| abstract_inverted_index.end, | 77 |
| abstract_inverted_index.i.e. | 202 |
| abstract_inverted_index.lack | 145 |
| abstract_inverted_index.lies | 122 |
| abstract_inverted_index.loss | 102 |
| abstract_inverted_index.more | 25 |
| abstract_inverted_index.only | 45, 123 |
| abstract_inverted_index.over | 64 |
| abstract_inverted_index.rank | 184 |
| abstract_inverted_index.same | 120 |
| abstract_inverted_index.some | 179 |
| abstract_inverted_index.tend | 34 |
| abstract_inverted_index.test | 186 |
| abstract_inverted_index.that | 42, 115 |
| abstract_inverted_index.this | 76, 176 |
| abstract_inverted_index.time | 93 |
| abstract_inverted_index.weak | 12 |
| abstract_inverted_index.(MER) | 2 |
| abstract_inverted_index.CASME | 203 |
| abstract_inverted_index.SAMM, | 205 |
| abstract_inverted_index.Then, | 127 |
| abstract_inverted_index.build | 155 |
| abstract_inverted_index.clues | 47, 86, 107, 130, 172 |
| abstract_inverted_index.fixed | 180 |
| abstract_inverted_index.given | 114 |
| abstract_inverted_index.their | 89 |
| abstract_inverted_index.three | 198 |
| abstract_inverted_index.time, | 65 |
| abstract_inverted_index.trend | 136, 177 |
| abstract_inverted_index.truth | 147 |
| abstract_inverted_index.video | 121 |
| abstract_inverted_index.which | 66, 167 |
| abstract_inverted_index.while | 87 |
| abstract_inverted_index.(Wrst) | 187 |
| abstract_inverted_index.First, | 95 |
| abstract_inverted_index.devise | 97 |
| abstract_inverted_index.facial | 40 |
| abstract_inverted_index.follow | 134 |
| abstract_inverted_index.guides | 168 |
| abstract_inverted_index.hurdle | 16 |
| abstract_inverted_index.images | 41 |
| abstract_inverted_index.method | 188 |
| abstract_inverted_index.motion | 9 |
| abstract_inverted_index.public | 199 |
| abstract_inverted_index.rather | 178 |
| abstract_inverted_index.scale. | 94 |
| abstract_inverted_index.scheme | 82 |
| abstract_inverted_index.value, | 166 |
| abstract_inverted_index.video, | 153 |
| abstract_inverted_index.video. | 140 |
| abstract_inverted_index.SMIC-HS | 207 |
| abstract_inverted_index.acquire | 104 |
| abstract_inverted_index.against | 211 |
| abstract_inverted_index.because | 5 |
| abstract_inverted_index.between | 112 |
| abstract_inverted_index.crucial | 68 |
| abstract_inverted_index.extract | 84 |
| abstract_inverted_index.frames, | 113 |
| abstract_inverted_index.include | 43 |
| abstract_inverted_index.leading | 51 |
| abstract_inverted_index.provide | 79 |
| abstract_inverted_index.results | 196 |
| abstract_inverted_index.setting | 160 |
| abstract_inverted_index.tackled | 19 |
| abstract_inverted_index.towards | 175 |
| abstract_inverted_index.vacancy | 163 |
| abstract_inverted_index.values. | 181 |
| abstract_inverted_index.However, | 30 |
| abstract_inverted_index.Wilcoxon | 183 |
| abstract_inverted_index.accurate | 26 |
| abstract_inverted_index.converge | 174 |
| abstract_inverted_index.encoding | 70 |
| abstract_inverted_index.enforced | 190 |
| abstract_inverted_index.existing | 31 |
| abstract_inverted_index.features | 38 |
| abstract_inverted_index.methods. | 213 |
| abstract_inverted_index.original | 139, 152 |
| abstract_inverted_index.reliable | 81 |
| abstract_inverted_index.tendency | 158 |
| abstract_inverted_index.validate | 208 |
| abstract_inverted_index.Intensity | 99 |
| abstract_inverted_index.addition, | 60 |
| abstract_inverted_index.databases | 201 |
| abstract_inverted_index.deficient | 56 |
| abstract_inverted_index.enhancing | 21 |
| abstract_inverted_index.extracted | 170 |
| abstract_inverted_index.features, | 50 |
| abstract_inverted_index.implement | 192 |
| abstract_inverted_index.intensity | 22, 46, 49, 54, 62, 85, 106, 129, 148, 157, 162, 171 |
| abstract_inverted_index.uncertain | 165 |
| abstract_inverted_index.variation | 63, 90 |
| abstract_inverted_index.annotation | 149 |
| abstract_inverted_index.calibrated | 132 |
| abstract_inverted_index.difference | 111, 117 |
| abstract_inverted_index.intensity. | 126 |
| abstract_inverted_index.movements, | 71 |
| abstract_inverted_index.movements. | 29 |
| abstract_inverted_index.neglected. | 74 |
| abstract_inverted_index.strategies | 33 |
| abstract_inverted_index.Recognition | 1 |
| abstract_inverted_index.acquisition | 27 |
| abstract_inverted_index.challenging | 4 |
| abstract_inverted_index.considering | 88 |
| abstract_inverted_index.contrasting | 109 |
| abstract_inverted_index.superiority | 210 |
| abstract_inverted_index.Distillation | 100 |
| abstract_inverted_index.Experimental | 195 |
| abstract_inverted_index.calibration. | 194 |
| abstract_inverted_index.credibility. | 58 |
| abstract_inverted_index.distinguish. | 14 |
| abstract_inverted_index.Specifically, | 141 |
| abstract_inverted_index.magnification | 32 |
| abstract_inverted_index.representation | 55 |
| abstract_inverted_index.Micro-Expression | 0 |
| abstract_inverted_index.state-of-the-art | 212 |
| abstract_inverted_index.Micro-Expressions' | 7 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.7200000286102295 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.98717949 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |