CNN Based Rat Detection using Thermal Sensor Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.30534/ijeter/2023/0911122023
The detection and control of rats in commercial buildings and industries are crucial issues due to the damage they can cause to Godowns and equipment. Traditional methods of rat detection and control can be time-consuming and expensive and may not always be effective. This has brought the exploration of machine learning-based approaches, which can provide more accurate and efficient detection of rats. One such approach is the use of thermal sensors in conjunction with machine learning algorithms to detect rats in commercial buildings, industries, etc. Thermal sensors can detect the body heat of rats, and machine learning algorithms can be trained to analyze thermal data and accurately identify the presence of rats. This approach has several advantages over traditional methods, including higher accuracy, long-range and faster detection. The machine learning algorithms used in this approach can be trained using large datasets of thermal images of rats, which can be obtained using thermal cameras
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://doi.org/10.30534/ijeter/2023/0911122023
- https://doi.org/10.30534/ijeter/2023/0911122023
- OA Status
- bronze
- References
- 5
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389436221
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389436221Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.30534/ijeter/2023/0911122023Digital Object Identifier
- Title
-
CNN Based Rat Detection using Thermal SensorWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-07Full publication date if available
- Authors
-
Yogesh Kumar, N.A. Priyanka, Madhavi Reddy, P. SushmaList of authors in order
- Landing page
-
https://doi.org/10.30534/ijeter/2023/0911122023Publisher landing page
- PDF URL
-
https://doi.org/10.30534/ijeter/2023/0911122023Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.30534/ijeter/2023/0911122023Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Machine learning, Thermal, Control (management), Physics, MeteorologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
5Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389436221 |
|---|---|
| doi | https://doi.org/10.30534/ijeter/2023/0911122023 |
| ids.doi | https://doi.org/10.30534/ijeter/2023/0911122023 |
| ids.openalex | https://openalex.org/W4389436221 |
| fwci | 0.0 |
| type | article |
| title | CNN Based Rat Detection using Thermal Sensor |
| biblio.issue | 11 |
| biblio.volume | 11 |
| biblio.last_page | 424 |
| biblio.first_page | 420 |
| topics[0].id | https://openalex.org/T11667 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.8891000151634216 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Advanced Chemical Sensor Technologies |
| topics[1].id | https://openalex.org/T10838 |
| topics[1].field.id | https://openalex.org/fields/34 |
| topics[1].field.display_name | Veterinary |
| topics[1].score | 0.8503000140190125 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3404 |
| topics[1].subfield.display_name | Small Animals |
| topics[1].display_name | Animal Behavior and Welfare Studies |
| topics[2].id | https://openalex.org/T10640 |
| topics[2].field.id | https://openalex.org/fields/16 |
| topics[2].field.display_name | Chemistry |
| topics[2].score | 0.8343999981880188 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1602 |
| topics[2].subfield.display_name | Analytical Chemistry |
| topics[2].display_name | Spectroscopy and Chemometric Analyses |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7115914225578308 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.642315685749054 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5756723284721375 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C204530211 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4834762215614319 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q752823 |
| concepts[3].display_name | Thermal |
| concepts[4].id | https://openalex.org/C2775924081 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4193251430988312 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[4].display_name | Control (management) |
| concepts[5].id | https://openalex.org/C121332964 |
| concepts[5].level | 0 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[5].display_name | Physics |
| concepts[6].id | https://openalex.org/C153294291 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[6].display_name | Meteorology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7115914225578308 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.642315685749054 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.5756723284721375 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/thermal |
| keywords[3].score | 0.4834762215614319 |
| keywords[3].display_name | Thermal |
| keywords[4].id | https://openalex.org/keywords/control |
| keywords[4].score | 0.4193251430988312 |
| keywords[4].display_name | Control (management) |
| language | en |
| locations[0].id | doi:10.30534/ijeter/2023/0911122023 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210201771 |
| locations[0].source.issn | 2347-3983 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2347-3983 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Emerging Trends in Engineering Research |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.30534/ijeter/2023/0911122023 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Emerging Trends in Engineering Research |
| locations[0].landing_page_url | http://doi.org/10.30534/ijeter/2023/0911122023 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5028170390 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6076-2168 |
| authorships[0].author.display_name | Yogesh Kumar |
| authorships[0].affiliations[0].raw_affiliation_string | G Narayanamma Institute of Technology and Science (for Women), India, |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Y Rakesh Kumar |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | G Narayanamma Institute of Technology and Science (for Women), India, |
| authorships[1].author.id | https://openalex.org/A5088851866 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | N.A. Priyanka |
| authorships[1].affiliations[0].raw_affiliation_string | G Narayanamma Institute of Technology and Science (for Women), India, |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Narri Priyanka |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | G Narayanamma Institute of Technology and Science (for Women), India, |
| authorships[2].author.id | https://openalex.org/A5087716685 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6078-3789 |
| authorships[2].author.display_name | Madhavi Reddy |
| authorships[2].affiliations[0].raw_affiliation_string | G Narayanamma Institute of Technology and Science (for Women), India, |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | M Reddy |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | G Narayanamma Institute of Technology and Science (for Women), India, |
| authorships[3].author.id | https://openalex.org/A5108883893 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | P. Sushma |
| authorships[3].affiliations[0].raw_affiliation_string | G Narayanamma Institute of Technology and Science (for Women), India, |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Peta Sushma |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | G Narayanamma Institute of Technology and Science (for Women), India, |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.30534/ijeter/2023/0911122023 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-12-08T00:00:00 |
| display_name | CNN Based Rat Detection using Thermal Sensor |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11667 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.8891000151634216 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Advanced Chemical Sensor Technologies |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4313488044, https://openalex.org/W3107602296, https://openalex.org/W3209574120, https://openalex.org/W4312192474, https://openalex.org/W4210805261 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.30534/ijeter/2023/0911122023 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210201771 |
| best_oa_location.source.issn | 2347-3983 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2347-3983 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Emerging Trends in Engineering Research |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.30534/ijeter/2023/0911122023 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Emerging Trends in Engineering Research |
| best_oa_location.landing_page_url | http://doi.org/10.30534/ijeter/2023/0911122023 |
| primary_location.id | doi:10.30534/ijeter/2023/0911122023 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210201771 |
| primary_location.source.issn | 2347-3983 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2347-3983 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Emerging Trends in Engineering Research |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.30534/ijeter/2023/0911122023 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Emerging Trends in Engineering Research |
| primary_location.landing_page_url | http://doi.org/10.30534/ijeter/2023/0911122023 |
| publication_date | 2023-12-07 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2063988658, https://openalex.org/W2149762526, https://openalex.org/W2786211114, https://openalex.org/W2125910417, https://openalex.org/W2127186988 |
| referenced_works_count | 5 |
| abstract_inverted_index.be | 33, 41, 99, 136, 148 |
| abstract_inverted_index.in | 6, 71, 80, 132 |
| abstract_inverted_index.is | 65 |
| abstract_inverted_index.of | 4, 27, 48, 60, 68, 92, 110, 141, 144 |
| abstract_inverted_index.to | 15, 21, 77, 101 |
| abstract_inverted_index.One | 62 |
| abstract_inverted_index.The | 0, 127 |
| abstract_inverted_index.and | 2, 9, 23, 30, 35, 37, 57, 94, 105, 124 |
| abstract_inverted_index.are | 11 |
| abstract_inverted_index.can | 19, 32, 53, 87, 98, 135, 147 |
| abstract_inverted_index.due | 14 |
| abstract_inverted_index.has | 44, 114 |
| abstract_inverted_index.may | 38 |
| abstract_inverted_index.not | 39 |
| abstract_inverted_index.rat | 28 |
| abstract_inverted_index.the | 16, 46, 66, 89, 108 |
| abstract_inverted_index.use | 67 |
| abstract_inverted_index.This | 43, 112 |
| abstract_inverted_index.body | 90 |
| abstract_inverted_index.data | 104 |
| abstract_inverted_index.etc. | 84 |
| abstract_inverted_index.heat | 91 |
| abstract_inverted_index.more | 55 |
| abstract_inverted_index.over | 117 |
| abstract_inverted_index.rats | 5, 79 |
| abstract_inverted_index.such | 63 |
| abstract_inverted_index.they | 18 |
| abstract_inverted_index.this | 133 |
| abstract_inverted_index.used | 131 |
| abstract_inverted_index.with | 73 |
| abstract_inverted_index.cause | 20 |
| abstract_inverted_index.large | 139 |
| abstract_inverted_index.rats, | 93, 145 |
| abstract_inverted_index.rats. | 61, 111 |
| abstract_inverted_index.using | 138, 150 |
| abstract_inverted_index.which | 52, 146 |
| abstract_inverted_index.always | 40 |
| abstract_inverted_index.damage | 17 |
| abstract_inverted_index.detect | 78, 88 |
| abstract_inverted_index.faster | 125 |
| abstract_inverted_index.higher | 121 |
| abstract_inverted_index.images | 143 |
| abstract_inverted_index.issues | 13 |
| abstract_inverted_index.Godowns | 22 |
| abstract_inverted_index.Thermal | 85 |
| abstract_inverted_index.analyze | 102 |
| abstract_inverted_index.brought | 45 |
| abstract_inverted_index.cameras | 152 |
| abstract_inverted_index.control | 3, 31 |
| abstract_inverted_index.crucial | 12 |
| abstract_inverted_index.machine | 49, 74, 95, 128 |
| abstract_inverted_index.methods | 26 |
| abstract_inverted_index.provide | 54 |
| abstract_inverted_index.sensors | 70, 86 |
| abstract_inverted_index.several | 115 |
| abstract_inverted_index.thermal | 69, 103, 142, 151 |
| abstract_inverted_index.trained | 100, 137 |
| abstract_inverted_index.accurate | 56 |
| abstract_inverted_index.approach | 64, 113, 134 |
| abstract_inverted_index.datasets | 140 |
| abstract_inverted_index.identify | 107 |
| abstract_inverted_index.learning | 75, 96, 129 |
| abstract_inverted_index.methods, | 119 |
| abstract_inverted_index.obtained | 149 |
| abstract_inverted_index.presence | 109 |
| abstract_inverted_index.accuracy, | 122 |
| abstract_inverted_index.buildings | 8 |
| abstract_inverted_index.detection | 1, 29, 59 |
| abstract_inverted_index.efficient | 58 |
| abstract_inverted_index.expensive | 36 |
| abstract_inverted_index.including | 120 |
| abstract_inverted_index.accurately | 106 |
| abstract_inverted_index.advantages | 116 |
| abstract_inverted_index.algorithms | 76, 97, 130 |
| abstract_inverted_index.buildings, | 82 |
| abstract_inverted_index.commercial | 7, 81 |
| abstract_inverted_index.detection. | 126 |
| abstract_inverted_index.effective. | 42 |
| abstract_inverted_index.equipment. | 24 |
| abstract_inverted_index.industries | 10 |
| abstract_inverted_index.long-range | 123 |
| abstract_inverted_index.Traditional | 25 |
| abstract_inverted_index.approaches, | 51 |
| abstract_inverted_index.conjunction | 72 |
| abstract_inverted_index.exploration | 47 |
| abstract_inverted_index.industries, | 83 |
| abstract_inverted_index.traditional | 118 |
| abstract_inverted_index.learning-based | 50 |
| abstract_inverted_index.time-consuming | 34 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.6100000143051147 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.19776406 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |