Coastline Identification from Remote-sensing Image Using Informative Vector Machine Learning Article Swipe
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.2991/ismems-16.2016.48
For a more rapid and accurate coastline identification method, this paper presents a method of coastline identification on remote-sensing image using Informative Vector Machine and then the coastline of Beihai Silver Beach in Guangxi has been identified.The results show that method of coastline identification on remote-sensing using Informative Vector Machine avoids the accuracy deficiency of the edge detection and threshold segmentation, and overcomes a series of open problems that difficulty in determining the optimal network topology structure in artificial neural network and the hyper-parameters in Support Vector Machine.The quick and accurate identification of coastline using the method has been realized which provides an efficient mean for the identification and monitoring of coastline.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2991/ismems-16.2016.48
- https://download.atlantis-press.com/article/25866978.pdf
- OA Status
- gold
- Cited By
- 1
- References
- 6
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2564795694
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2564795694Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2991/ismems-16.2016.48Digital Object Identifier
- Title
-
Coastline Identification from Remote-sensing Image Using Informative Vector Machine LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-01-01Full publication date if available
- Authors
-
Guoshao Su, Xiaochun Hu, Liubin Yan, Yanming LiuList of authors in order
- Landing page
-
https://doi.org/10.2991/ismems-16.2016.48Publisher landing page
- PDF URL
-
https://download.atlantis-press.com/article/25866978.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://download.atlantis-press.com/article/25866978.pdfDirect OA link when available
- Concepts
-
Computer science, Identification (biology), Support vector machine, Artificial intelligence, Remote sensing, Computer vision, Pattern recognition (psychology), Image (mathematics), Machine learning, Contextual image classification, Geology, Biology, BotanyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1Per-year citation counts (last 5 years)
- References (count)
-
6Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2564795694 |
|---|---|
| doi | https://doi.org/10.2991/ismems-16.2016.48 |
| ids.doi | https://doi.org/10.2991/ismems-16.2016.48 |
| ids.mag | 2564795694 |
| ids.openalex | https://openalex.org/W2564795694 |
| fwci | 0.0 |
| type | article |
| title | Coastline Identification from Remote-sensing Image Using Informative Vector Machine Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13126 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9911999702453613 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Scientific Research and Discoveries |
| topics[1].id | https://openalex.org/T12814 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9901999831199646 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Gaussian Processes and Bayesian Inference |
| topics[2].id | https://openalex.org/T10688 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9811999797821045 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image and Signal Denoising Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7064246535301208 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C116834253 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7010701298713684 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[1].display_name | Identification (biology) |
| concepts[2].id | https://openalex.org/C12267149 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6841370463371277 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[2].display_name | Support vector machine |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6295755505561829 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C62649853 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5324562191963196 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[4].display_name | Remote sensing |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.49970221519470215 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4591294229030609 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C115961682 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45048049092292786 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[7].display_name | Image (mathematics) |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.44485750794410706 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C75294576 |
| concepts[9].level | 3 |
| concepts[9].score | 0.42954736948013306 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5165192 |
| concepts[9].display_name | Contextual image classification |
| concepts[10].id | https://openalex.org/C127313418 |
| concepts[10].level | 0 |
| concepts[10].score | 0.18200859427452087 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[10].display_name | Geology |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C59822182 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[12].display_name | Botany |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7064246535301208 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/identification |
| keywords[1].score | 0.7010701298713684 |
| keywords[1].display_name | Identification (biology) |
| keywords[2].id | https://openalex.org/keywords/support-vector-machine |
| keywords[2].score | 0.6841370463371277 |
| keywords[2].display_name | Support vector machine |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6295755505561829 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/remote-sensing |
| keywords[4].score | 0.5324562191963196 |
| keywords[4].display_name | Remote sensing |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.49970221519470215 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.4591294229030609 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/image |
| keywords[7].score | 0.45048049092292786 |
| keywords[7].display_name | Image (mathematics) |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.44485750794410706 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/contextual-image-classification |
| keywords[9].score | 0.42954736948013306 |
| keywords[9].display_name | Contextual image classification |
| keywords[10].id | https://openalex.org/keywords/geology |
| keywords[10].score | 0.18200859427452087 |
| keywords[10].display_name | Geology |
| language | en |
| locations[0].id | doi:10.2991/ismems-16.2016.48 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://download.atlantis-press.com/article/25866978.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the International Symposium on Mechanical Engineering and Material Science |
| locations[0].landing_page_url | https://doi.org/10.2991/ismems-16.2016.48 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5039750959 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9506-6827 |
| authorships[0].author.display_name | Guoshao Su |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I150807315 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Civil Engineering and Architecture, Guangxi University, Nanning, China 530004 |
| authorships[0].institutions[0].id | https://openalex.org/I150807315 |
| authorships[0].institutions[0].ror | https://ror.org/02c9qn167 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I150807315 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Guangxi University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Guoshao Su |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Civil Engineering and Architecture, Guangxi University, Nanning, China 530004 |
| authorships[1].author.id | https://openalex.org/A5059473587 |
| authorships[1].author.orcid | https://orcid.org/0009-0005-7254-2989 |
| authorships[1].author.display_name | Xiaochun Hu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I150807315 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Civil Engineering and Architecture, Guangxi University, Nanning, China 530004 |
| authorships[1].institutions[0].id | https://openalex.org/I150807315 |
| authorships[1].institutions[0].ror | https://ror.org/02c9qn167 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I150807315 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Guangxi University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiaochun Hu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Civil Engineering and Architecture, Guangxi University, Nanning, China 530004 |
| authorships[2].author.id | https://openalex.org/A5103373254 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Liubin Yan |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I150807315 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Civil Engineering and Architecture, Guangxi University, Nanning, China 530004 |
| authorships[2].institutions[0].id | https://openalex.org/I150807315 |
| authorships[2].institutions[0].ror | https://ror.org/02c9qn167 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I150807315 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Guangxi University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liubin Yan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Civil Engineering and Architecture, Guangxi University, Nanning, China 530004 |
| authorships[3].author.id | https://openalex.org/A5100393280 |
| authorships[3].author.orcid | https://orcid.org/0009-0005-6439-1113 |
| authorships[3].author.display_name | Yanming Liu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I198645480 |
| authorships[3].affiliations[0].raw_affiliation_string | Guangxi College of Water Resources and Electric Power, Nanning, China 530023 |
| authorships[3].institutions[0].id | https://openalex.org/I198645480 |
| authorships[3].institutions[0].ror | https://ror.org/03acrzv41 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I198645480 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | North China University of Water Resources and Electric Power |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yanming Liu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Guangxi College of Water Resources and Electric Power, Nanning, China 530023 |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://download.atlantis-press.com/article/25866978.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Coastline Identification from Remote-sensing Image Using Informative Vector Machine Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13126 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9911999702453613 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Scientific Research and Discoveries |
| related_works | https://openalex.org/W2090763504, https://openalex.org/W148178222, https://openalex.org/W1948992892, https://openalex.org/W2104657898, https://openalex.org/W1886884218, https://openalex.org/W1910826599, https://openalex.org/W1980100242, https://openalex.org/W2530420969, https://openalex.org/W2051187167, https://openalex.org/W4315815996 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2991/ismems-16.2016.48 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://download.atlantis-press.com/article/25866978.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the International Symposium on Mechanical Engineering and Material Science |
| best_oa_location.landing_page_url | https://doi.org/10.2991/ismems-16.2016.48 |
| primary_location.id | doi:10.2991/ismems-16.2016.48 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://download.atlantis-press.com/article/25866978.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the International Symposium on Mechanical Engineering and Material Science |
| primary_location.landing_page_url | https://doi.org/10.2991/ismems-16.2016.48 |
| publication_date | 2016-01-01 |
| publication_year | 2016 |
| referenced_works | https://openalex.org/W2393924109, https://openalex.org/W2030290736, https://openalex.org/W2137956165, https://openalex.org/W1590541928, https://openalex.org/W2105821048, https://openalex.org/W3141423514 |
| referenced_works_count | 6 |
| abstract_inverted_index.a | 1, 12, 63 |
| abstract_inverted_index.an | 102 |
| abstract_inverted_index.in | 32, 70, 77, 84 |
| abstract_inverted_index.of | 14, 28, 41, 54, 65, 92, 110 |
| abstract_inverted_index.on | 17, 44 |
| abstract_inverted_index.For | 0 |
| abstract_inverted_index.and | 4, 24, 58, 61, 81, 89, 108 |
| abstract_inverted_index.for | 105 |
| abstract_inverted_index.has | 34, 97 |
| abstract_inverted_index.the | 26, 51, 55, 72, 82, 95, 106 |
| abstract_inverted_index.been | 35, 98 |
| abstract_inverted_index.edge | 56 |
| abstract_inverted_index.mean | 104 |
| abstract_inverted_index.more | 2 |
| abstract_inverted_index.open | 66 |
| abstract_inverted_index.show | 38 |
| abstract_inverted_index.that | 39, 68 |
| abstract_inverted_index.then | 25 |
| abstract_inverted_index.this | 9 |
| abstract_inverted_index.Beach | 31 |
| abstract_inverted_index.image | 19 |
| abstract_inverted_index.paper | 10 |
| abstract_inverted_index.quick | 88 |
| abstract_inverted_index.rapid | 3 |
| abstract_inverted_index.using | 20, 46, 94 |
| abstract_inverted_index.which | 100 |
| abstract_inverted_index.Beihai | 29 |
| abstract_inverted_index.Silver | 30 |
| abstract_inverted_index.Vector | 22, 48, 86 |
| abstract_inverted_index.avoids | 50 |
| abstract_inverted_index.method | 13, 40, 96 |
| abstract_inverted_index.neural | 79 |
| abstract_inverted_index.series | 64 |
| abstract_inverted_index.Guangxi | 33 |
| abstract_inverted_index.Machine | 23, 49 |
| abstract_inverted_index.Support | 85 |
| abstract_inverted_index.method, | 8 |
| abstract_inverted_index.network | 74, 80 |
| abstract_inverted_index.optimal | 73 |
| abstract_inverted_index.results | 37 |
| abstract_inverted_index.accuracy | 52 |
| abstract_inverted_index.accurate | 5, 90 |
| abstract_inverted_index.presents | 11 |
| abstract_inverted_index.problems | 67 |
| abstract_inverted_index.provides | 101 |
| abstract_inverted_index.realized | 99 |
| abstract_inverted_index.topology | 75 |
| abstract_inverted_index.coastline | 6, 15, 27, 42, 93 |
| abstract_inverted_index.detection | 57 |
| abstract_inverted_index.efficient | 103 |
| abstract_inverted_index.overcomes | 62 |
| abstract_inverted_index.structure | 76 |
| abstract_inverted_index.threshold | 59 |
| abstract_inverted_index.artificial | 78 |
| abstract_inverted_index.coastline. | 111 |
| abstract_inverted_index.deficiency | 53 |
| abstract_inverted_index.difficulty | 69 |
| abstract_inverted_index.monitoring | 109 |
| abstract_inverted_index.Informative | 21, 47 |
| abstract_inverted_index.Machine.The | 87 |
| abstract_inverted_index.determining | 71 |
| abstract_inverted_index.segmentation, | 60 |
| abstract_inverted_index.identification | 7, 16, 43, 91, 107 |
| abstract_inverted_index.identified.The | 36 |
| abstract_inverted_index.remote-sensing | 18, 45 |
| abstract_inverted_index.hyper-parameters | 83 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.11836944 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |