COCA: Classifier-Oriented Calibration via Textual Prototype for Source-Free Universal Domain Adaptation Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2308.10450
Universal domain adaptation (UniDA) aims to address domain and category shifts across data sources. Recently, due to more stringent data restrictions, researchers have introduced source-free UniDA (SF-UniDA). SF-UniDA methods eliminate the need for direct access to source samples when performing adaptation to the target domain. However, existing SF-UniDA methods still require an extensive quantity of labeled source samples to train a source model, resulting in significant labeling costs. To tackle this issue, we present a novel plug-and-play classifier-oriented calibration (COCA) method. COCA, which exploits textual prototypes, is designed for the source models based on few-shot learning with vision-language models (VLMs). It endows the VLM-powered few-shot learners, which are built for closed-set classification, with the unknown-aware ability to distinguish common and unknown classes in the SF-UniDA scenario. Crucially, COCA is a new paradigm to tackle SF-UniDA challenges based on VLMs, which focuses on classifier instead of image encoder optimization. Experiments show that COCA outperforms state-of-the-art UniDA and SF-UniDA models.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2308.10450
- https://arxiv.org/pdf/2308.10450
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386081439
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386081439Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2308.10450Digital Object Identifier
- Title
-
COCA: Classifier-Oriented Calibration via Textual Prototype for Source-Free Universal Domain AdaptationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-21Full publication date if available
- Authors
-
Xinghong Liu, Yi Zhou, Tao Zhou, Chun-Mei Feng, Ling ShaoList of authors in order
- Landing page
-
https://arxiv.org/abs/2308.10450Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2308.10450Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2308.10450Direct OA link when available
- Concepts
-
Classifier (UML), Domain adaptation, Computer science, Geology, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386081439 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2308.10450 |
| ids.doi | https://doi.org/10.48550/arxiv.2308.10450 |
| ids.openalex | https://openalex.org/W4386081439 |
| fwci | |
| type | preprint |
| title | COCA: Classifier-Oriented Calibration via Textual Prototype for Source-Free Universal Domain Adaptation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9876999855041504 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C95623464 |
| concepts[0].level | 2 |
| concepts[0].score | 0.46168914437294006 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[0].display_name | Classifier (UML) |
| concepts[1].id | https://openalex.org/C2776434776 |
| concepts[1].level | 3 |
| concepts[1].score | 0.4428936839103699 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q19246213 |
| concepts[1].display_name | Domain adaptation |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.43494054675102234 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C127313418 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3737720251083374 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[3].display_name | Geology |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3416213393211365 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/classifier |
| keywords[0].score | 0.46168914437294006 |
| keywords[0].display_name | Classifier (UML) |
| keywords[1].id | https://openalex.org/keywords/domain-adaptation |
| keywords[1].score | 0.4428936839103699 |
| keywords[1].display_name | Domain adaptation |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.43494054675102234 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/geology |
| keywords[3].score | 0.3737720251083374 |
| keywords[3].display_name | Geology |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3416213393211365 |
| keywords[4].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2308.10450 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2308.10450 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2308.10450 |
| locations[1].id | doi:10.48550/arxiv.2308.10450 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2308.10450 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5047555766 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1627-7667 |
| authorships[0].author.display_name | Xinghong Liu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liu, Xinghong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100753053 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0020-847X |
| authorships[1].author.display_name | Yi Zhou |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhou, Yi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5067280360 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8145-712X |
| authorships[2].author.display_name | Tao Zhou |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhou, Tao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5049444898 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3025-8964 |
| authorships[3].author.display_name | Chun-Mei Feng |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Feng, Chun-Mei |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5082634513 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8264-6117 |
| authorships[4].author.display_name | Ling Shao |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Shao, Ling |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2308.10450 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-08-23T00:00:00 |
| display_name | COCA: Classifier-Oriented Calibration via Textual Prototype for Source-Free Universal Domain Adaptation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9876999855041504 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W3080655457, https://openalex.org/W2145868540, https://openalex.org/W3166286441, https://openalex.org/W3214142563, https://openalex.org/W3136267388, https://openalex.org/W3186065094, https://openalex.org/W4287263085, https://openalex.org/W3093803318, https://openalex.org/W3204418343, https://openalex.org/W4390401377 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2308.10450 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2308.10450 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2308.10450 |
| primary_location.id | pmh:oai:arXiv.org:2308.10450 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2308.10450 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2308.10450 |
| publication_date | 2023-08-21 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 60, 74, 129 |
| abstract_inverted_index.It | 100 |
| abstract_inverted_index.To | 68 |
| abstract_inverted_index.an | 51 |
| abstract_inverted_index.in | 64, 122 |
| abstract_inverted_index.is | 86, 128 |
| abstract_inverted_index.of | 54, 144 |
| abstract_inverted_index.on | 93, 137, 141 |
| abstract_inverted_index.to | 5, 16, 35, 41, 58, 116, 132 |
| abstract_inverted_index.we | 72 |
| abstract_inverted_index.and | 8, 119, 155 |
| abstract_inverted_index.are | 107 |
| abstract_inverted_index.due | 15 |
| abstract_inverted_index.for | 32, 88, 109 |
| abstract_inverted_index.new | 130 |
| abstract_inverted_index.the | 30, 42, 89, 102, 113, 123 |
| abstract_inverted_index.COCA | 127, 151 |
| abstract_inverted_index.aims | 4 |
| abstract_inverted_index.data | 12, 19 |
| abstract_inverted_index.have | 22 |
| abstract_inverted_index.more | 17 |
| abstract_inverted_index.need | 31 |
| abstract_inverted_index.show | 149 |
| abstract_inverted_index.that | 150 |
| abstract_inverted_index.this | 70 |
| abstract_inverted_index.when | 38 |
| abstract_inverted_index.with | 96, 112 |
| abstract_inverted_index.COCA, | 81 |
| abstract_inverted_index.UniDA | 25, 154 |
| abstract_inverted_index.VLMs, | 138 |
| abstract_inverted_index.based | 92, 136 |
| abstract_inverted_index.built | 108 |
| abstract_inverted_index.image | 145 |
| abstract_inverted_index.novel | 75 |
| abstract_inverted_index.still | 49 |
| abstract_inverted_index.train | 59 |
| abstract_inverted_index.which | 82, 106, 139 |
| abstract_inverted_index.(COCA) | 79 |
| abstract_inverted_index.access | 34 |
| abstract_inverted_index.across | 11 |
| abstract_inverted_index.common | 118 |
| abstract_inverted_index.costs. | 67 |
| abstract_inverted_index.direct | 33 |
| abstract_inverted_index.domain | 1, 7 |
| abstract_inverted_index.endows | 101 |
| abstract_inverted_index.issue, | 71 |
| abstract_inverted_index.model, | 62 |
| abstract_inverted_index.models | 91, 98 |
| abstract_inverted_index.shifts | 10 |
| abstract_inverted_index.source | 36, 56, 61, 90 |
| abstract_inverted_index.tackle | 69, 133 |
| abstract_inverted_index.target | 43 |
| abstract_inverted_index.(UniDA) | 3 |
| abstract_inverted_index.(VLMs). | 99 |
| abstract_inverted_index.ability | 115 |
| abstract_inverted_index.address | 6 |
| abstract_inverted_index.classes | 121 |
| abstract_inverted_index.domain. | 44 |
| abstract_inverted_index.encoder | 146 |
| abstract_inverted_index.focuses | 140 |
| abstract_inverted_index.instead | 143 |
| abstract_inverted_index.labeled | 55 |
| abstract_inverted_index.method. | 80 |
| abstract_inverted_index.methods | 28, 48 |
| abstract_inverted_index.models. | 157 |
| abstract_inverted_index.present | 73 |
| abstract_inverted_index.require | 50 |
| abstract_inverted_index.samples | 37, 57 |
| abstract_inverted_index.textual | 84 |
| abstract_inverted_index.unknown | 120 |
| abstract_inverted_index.However, | 45 |
| abstract_inverted_index.SF-UniDA | 27, 47, 124, 134, 156 |
| abstract_inverted_index.category | 9 |
| abstract_inverted_index.designed | 87 |
| abstract_inverted_index.existing | 46 |
| abstract_inverted_index.exploits | 83 |
| abstract_inverted_index.few-shot | 94, 104 |
| abstract_inverted_index.labeling | 66 |
| abstract_inverted_index.learning | 95 |
| abstract_inverted_index.paradigm | 131 |
| abstract_inverted_index.quantity | 53 |
| abstract_inverted_index.sources. | 13 |
| abstract_inverted_index.Recently, | 14 |
| abstract_inverted_index.Universal | 0 |
| abstract_inverted_index.eliminate | 29 |
| abstract_inverted_index.extensive | 52 |
| abstract_inverted_index.learners, | 105 |
| abstract_inverted_index.resulting | 63 |
| abstract_inverted_index.scenario. | 125 |
| abstract_inverted_index.stringent | 18 |
| abstract_inverted_index.Crucially, | 126 |
| abstract_inverted_index.adaptation | 2, 40 |
| abstract_inverted_index.challenges | 135 |
| abstract_inverted_index.classifier | 142 |
| abstract_inverted_index.closed-set | 110 |
| abstract_inverted_index.introduced | 23 |
| abstract_inverted_index.performing | 39 |
| abstract_inverted_index.(SF-UniDA). | 26 |
| abstract_inverted_index.Experiments | 148 |
| abstract_inverted_index.VLM-powered | 103 |
| abstract_inverted_index.calibration | 78 |
| abstract_inverted_index.distinguish | 117 |
| abstract_inverted_index.outperforms | 152 |
| abstract_inverted_index.prototypes, | 85 |
| abstract_inverted_index.researchers | 21 |
| abstract_inverted_index.significant | 65 |
| abstract_inverted_index.source-free | 24 |
| abstract_inverted_index.optimization. | 147 |
| abstract_inverted_index.plug-and-play | 76 |
| abstract_inverted_index.restrictions, | 20 |
| abstract_inverted_index.unknown-aware | 114 |
| abstract_inverted_index.classification, | 111 |
| abstract_inverted_index.vision-language | 97 |
| abstract_inverted_index.state-of-the-art | 153 |
| abstract_inverted_index.classifier-oriented | 77 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |