CODA-19: Using a Non-Expert Crowd to Annotate Research Aspects on 10,000+ Abstracts in the COVID-19 Open Research Dataset Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2005.02367
This paper introduces CODA-19, a human-annotated dataset that codes the Background, Purpose, Method, Finding/Contribution, and Other sections of 10,966 English abstracts in the COVID-19 Open Research Dataset. CODA-19 was created by 248 crowd workers from Amazon Mechanical Turk within 10 days, and achieved labeling quality comparable to that of experts. Each abstract was annotated by nine different workers, and the final labels were acquired by majority vote. The inter-annotator agreement (Cohen's kappa) between the crowd and the biomedical expert (0.741) is comparable to inter-expert agreement (0.788). CODA-19's labels have an accuracy of 82.2% when compared to the biomedical expert's labels, while the accuracy between experts was 85.0%. Reliable human annotations help scientists access and integrate the rapidly accelerating coronavirus literature, and also serve as the battery of AI/NLP research, but obtaining expert annotations can be slow. We demonstrated that a non-expert crowd can be rapidly employed at scale to join the fight against COVID-19.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2005.02367
- https://arxiv.org/pdf/2005.02367
- OA Status
- green
- Cited By
- 11
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4287781395
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4287781395Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2005.02367Digital Object Identifier
- Title
-
CODA-19: Using a Non-Expert Crowd to Annotate Research Aspects on 10,000+ Abstracts in the COVID-19 Open Research DatasetWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-05-05Full publication date if available
- Authors
-
Ting-Hao Huang, Chieh-Yang Huang, Chien‐Kuang Cornelia Ding, Yen-Chia Hsu, C. Lee GilesList of authors in order
- Landing page
-
https://arxiv.org/abs/2005.02367Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2005.02367Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2005.02367Direct OA link when available
- Concepts
-
Coda, Coronavirus disease 2019 (COVID-19), Computer science, Crowdsourcing, Artificial intelligence, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Quality (philosophy), 2019-20 coronavirus outbreak, Natural language processing, Information retrieval, World Wide Web, Medicine, Seismology, Virology, Outbreak, Pathology, Philosophy, Epistemology, Infectious disease (medical specialty), Disease, GeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 5, 2022: 3, 2021: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4287781395 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2005.02367 |
| ids.doi | https://doi.org/10.48550/arxiv.2005.02367 |
| ids.openalex | https://openalex.org/W4287781395 |
| fwci | |
| type | preprint |
| title | CODA-19: Using a Non-Expert Crowd to Annotate Research Aspects on 10,000+ Abstracts in the COVID-19 Open Research Dataset |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12943 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9761000275611877 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | COVID-19 Digital Contact Tracing |
| topics[1].id | https://openalex.org/T11775 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9751999974250793 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | COVID-19 diagnosis using AI |
| topics[2].id | https://openalex.org/T11147 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9453999996185303 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3312 |
| topics[2].subfield.display_name | Sociology and Political Science |
| topics[2].display_name | Misinformation and Its Impacts |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C3962253 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9179915189743042 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q852466 |
| concepts[0].display_name | Coda |
| concepts[1].id | https://openalex.org/C3008058167 |
| concepts[1].level | 4 |
| concepts[1].score | 0.6918506026268005 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[1].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6842419505119324 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C62230096 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6208688020706177 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q275969 |
| concepts[3].display_name | Crowdsourcing |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.48198431730270386 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C3007834351 |
| concepts[5].level | 5 |
| concepts[5].score | 0.46857500076293945 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q82069695 |
| concepts[5].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| concepts[6].id | https://openalex.org/C2779530757 |
| concepts[6].level | 2 |
| concepts[6].score | 0.442402184009552 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[6].display_name | Quality (philosophy) |
| concepts[7].id | https://openalex.org/C3006700255 |
| concepts[7].level | 3 |
| concepts[7].score | 0.42995569109916687 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q81068910 |
| concepts[7].display_name | 2019-20 coronavirus outbreak |
| concepts[8].id | https://openalex.org/C204321447 |
| concepts[8].level | 1 |
| concepts[8].score | 0.42399153113365173 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[8].display_name | Natural language processing |
| concepts[9].id | https://openalex.org/C23123220 |
| concepts[9].level | 1 |
| concepts[9].score | 0.35560905933380127 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[9].display_name | Information retrieval |
| concepts[10].id | https://openalex.org/C136764020 |
| concepts[10].level | 1 |
| concepts[10].score | 0.20981794595718384 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[10].display_name | World Wide Web |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.07769721746444702 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C165205528 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0664987862110138 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q83371 |
| concepts[12].display_name | Seismology |
| concepts[13].id | https://openalex.org/C159047783 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7215 |
| concepts[13].display_name | Virology |
| concepts[14].id | https://openalex.org/C116675565 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3241045 |
| concepts[14].display_name | Outbreak |
| concepts[15].id | https://openalex.org/C142724271 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[15].display_name | Pathology |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| concepts[17].id | https://openalex.org/C111472728 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[17].display_name | Epistemology |
| concepts[18].id | https://openalex.org/C524204448 |
| concepts[18].level | 3 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[18].display_name | Infectious disease (medical specialty) |
| concepts[19].id | https://openalex.org/C2779134260 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[19].display_name | Disease |
| concepts[20].id | https://openalex.org/C127313418 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[20].display_name | Geology |
| keywords[0].id | https://openalex.org/keywords/coda |
| keywords[0].score | 0.9179915189743042 |
| keywords[0].display_name | Coda |
| keywords[1].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[1].score | 0.6918506026268005 |
| keywords[1].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6842419505119324 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/crowdsourcing |
| keywords[3].score | 0.6208688020706177 |
| keywords[3].display_name | Crowdsourcing |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.48198431730270386 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/severe-acute-respiratory-syndrome-coronavirus-2 |
| keywords[5].score | 0.46857500076293945 |
| keywords[5].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| keywords[6].id | https://openalex.org/keywords/quality |
| keywords[6].score | 0.442402184009552 |
| keywords[6].display_name | Quality (philosophy) |
| keywords[7].id | https://openalex.org/keywords/2019-20-coronavirus-outbreak |
| keywords[7].score | 0.42995569109916687 |
| keywords[7].display_name | 2019-20 coronavirus outbreak |
| keywords[8].id | https://openalex.org/keywords/natural-language-processing |
| keywords[8].score | 0.42399153113365173 |
| keywords[8].display_name | Natural language processing |
| keywords[9].id | https://openalex.org/keywords/information-retrieval |
| keywords[9].score | 0.35560905933380127 |
| keywords[9].display_name | Information retrieval |
| keywords[10].id | https://openalex.org/keywords/world-wide-web |
| keywords[10].score | 0.20981794595718384 |
| keywords[10].display_name | World Wide Web |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.07769721746444702 |
| keywords[11].display_name | Medicine |
| keywords[12].id | https://openalex.org/keywords/seismology |
| keywords[12].score | 0.0664987862110138 |
| keywords[12].display_name | Seismology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2005.02367 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2005.02367 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2005.02367 |
| locations[1].id | doi:10.48550/arxiv.2005.02367 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2005.02367 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5083675499 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7021-4627 |
| authorships[0].author.display_name | Ting-Hao Huang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Huang, Ting-Hao 'Kenneth' |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102729368 |
| authorships[1].author.orcid | https://orcid.org/0009-0001-6736-9959 |
| authorships[1].author.display_name | Chieh-Yang Huang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Huang, Chieh-Yang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5023951721 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9047-0222 |
| authorships[2].author.display_name | Chien‐Kuang Cornelia Ding |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ding, Chien-Kuang Cornelia |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5008545327 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8016-7534 |
| authorships[3].author.display_name | Yen-Chia Hsu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hsu, Yen-Chia |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5004494674 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | C. Lee Giles |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Giles, C. Lee |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2005.02367 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-07-26T00:00:00 |
| display_name | CODA-19: Using a Non-Expert Crowd to Annotate Research Aspects on 10,000+ Abstracts in the COVID-19 Open Research Dataset |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12943 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9761000275611877 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | COVID-19 Digital Contact Tracing |
| related_works | https://openalex.org/W4200329650, https://openalex.org/W3127156785, https://openalex.org/W3009669391, https://openalex.org/W4205215807, https://openalex.org/W3005417802, https://openalex.org/W3049446289, https://openalex.org/W3171943759, https://openalex.org/W4226296940, https://openalex.org/W3028835529, https://openalex.org/W3036314732 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2005.02367 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2005.02367 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2005.02367 |
| primary_location.id | pmh:oai:arXiv.org:2005.02367 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2005.02367 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2005.02367 |
| publication_date | 2020-05-05 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 139 |
| abstract_inverted_index.10 | 39 |
| abstract_inverted_index.We | 136 |
| abstract_inverted_index.an | 89 |
| abstract_inverted_index.as | 123 |
| abstract_inverted_index.at | 146 |
| abstract_inverted_index.be | 134, 143 |
| abstract_inverted_index.by | 30, 54, 64 |
| abstract_inverted_index.in | 21 |
| abstract_inverted_index.is | 80 |
| abstract_inverted_index.of | 17, 48, 91, 126 |
| abstract_inverted_index.to | 46, 82, 95, 148 |
| abstract_inverted_index.248 | 31 |
| abstract_inverted_index.The | 67 |
| abstract_inverted_index.and | 14, 41, 58, 75, 113, 120 |
| abstract_inverted_index.but | 129 |
| abstract_inverted_index.can | 133, 142 |
| abstract_inverted_index.the | 9, 22, 59, 73, 76, 96, 101, 115, 124, 150 |
| abstract_inverted_index.was | 28, 52, 105 |
| abstract_inverted_index.Each | 50 |
| abstract_inverted_index.Open | 24 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.Turk | 37 |
| abstract_inverted_index.also | 121 |
| abstract_inverted_index.from | 34 |
| abstract_inverted_index.have | 88 |
| abstract_inverted_index.help | 110 |
| abstract_inverted_index.join | 149 |
| abstract_inverted_index.nine | 55 |
| abstract_inverted_index.that | 7, 47, 138 |
| abstract_inverted_index.were | 62 |
| abstract_inverted_index.when | 93 |
| abstract_inverted_index.82.2% | 92 |
| abstract_inverted_index.Other | 15 |
| abstract_inverted_index.codes | 8 |
| abstract_inverted_index.crowd | 32, 74, 141 |
| abstract_inverted_index.days, | 40 |
| abstract_inverted_index.fight | 151 |
| abstract_inverted_index.final | 60 |
| abstract_inverted_index.human | 108 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.scale | 147 |
| abstract_inverted_index.serve | 122 |
| abstract_inverted_index.slow. | 135 |
| abstract_inverted_index.vote. | 66 |
| abstract_inverted_index.while | 100 |
| abstract_inverted_index.10,966 | 18 |
| abstract_inverted_index.85.0%. | 106 |
| abstract_inverted_index.AI/NLP | 127 |
| abstract_inverted_index.Amazon | 35 |
| abstract_inverted_index.access | 112 |
| abstract_inverted_index.expert | 78, 131 |
| abstract_inverted_index.kappa) | 71 |
| abstract_inverted_index.labels | 61, 87 |
| abstract_inverted_index.within | 38 |
| abstract_inverted_index.(0.741) | 79 |
| abstract_inverted_index.CODA-19 | 27 |
| abstract_inverted_index.English | 19 |
| abstract_inverted_index.Method, | 12 |
| abstract_inverted_index.against | 152 |
| abstract_inverted_index.battery | 125 |
| abstract_inverted_index.between | 72, 103 |
| abstract_inverted_index.created | 29 |
| abstract_inverted_index.dataset | 6 |
| abstract_inverted_index.experts | 104 |
| abstract_inverted_index.labels, | 99 |
| abstract_inverted_index.quality | 44 |
| abstract_inverted_index.rapidly | 116, 144 |
| abstract_inverted_index.workers | 33 |
| abstract_inverted_index.(0.788). | 85 |
| abstract_inverted_index.(Cohen's | 70 |
| abstract_inverted_index.CODA-19, | 3 |
| abstract_inverted_index.COVID-19 | 23 |
| abstract_inverted_index.Dataset. | 26 |
| abstract_inverted_index.Purpose, | 11 |
| abstract_inverted_index.Reliable | 107 |
| abstract_inverted_index.Research | 25 |
| abstract_inverted_index.abstract | 51 |
| abstract_inverted_index.accuracy | 90, 102 |
| abstract_inverted_index.achieved | 42 |
| abstract_inverted_index.acquired | 63 |
| abstract_inverted_index.compared | 94 |
| abstract_inverted_index.employed | 145 |
| abstract_inverted_index.expert's | 98 |
| abstract_inverted_index.experts. | 49 |
| abstract_inverted_index.labeling | 43 |
| abstract_inverted_index.majority | 65 |
| abstract_inverted_index.sections | 16 |
| abstract_inverted_index.workers, | 57 |
| abstract_inverted_index.CODA-19's | 86 |
| abstract_inverted_index.COVID-19. | 153 |
| abstract_inverted_index.abstracts | 20 |
| abstract_inverted_index.agreement | 69, 84 |
| abstract_inverted_index.annotated | 53 |
| abstract_inverted_index.different | 56 |
| abstract_inverted_index.integrate | 114 |
| abstract_inverted_index.obtaining | 130 |
| abstract_inverted_index.research, | 128 |
| abstract_inverted_index.Mechanical | 36 |
| abstract_inverted_index.biomedical | 77, 97 |
| abstract_inverted_index.comparable | 45, 81 |
| abstract_inverted_index.introduces | 2 |
| abstract_inverted_index.non-expert | 140 |
| abstract_inverted_index.scientists | 111 |
| abstract_inverted_index.Background, | 10 |
| abstract_inverted_index.annotations | 109, 132 |
| abstract_inverted_index.coronavirus | 118 |
| abstract_inverted_index.literature, | 119 |
| abstract_inverted_index.accelerating | 117 |
| abstract_inverted_index.demonstrated | 137 |
| abstract_inverted_index.inter-expert | 83 |
| abstract_inverted_index.human-annotated | 5 |
| abstract_inverted_index.inter-annotator | 68 |
| abstract_inverted_index.Finding/Contribution, | 13 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |