Code Offset in the Exponent Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.4230/lipics.itc.2021.15
Fuzzy extractors derive stable keys from noisy sources. They are a fundamental tool for key derivation from biometric sources. This work introduces a new construction, code offset in the exponent. This construction is the first reusable fuzzy extractor that simultaneously supports structured, low entropy distributions with correlated symbols and confidence information. These properties are specifically motivated by the most pertinent applications - key derivation from biometrics and physical unclonable functions - which typically demonstrate low entropy with additional statistical correlations and benefit from extractors that can leverage confidence information for efficiency. Code offset in the exponent is a group encoding of the code offset construction (Juels and Wattenberg, CCS 1999). A random codeword of a linear error-correcting code is used as a one-time pad for a sampled value from the noisy source. Rather than encoding this directly, code offset in the exponent encodes by exponentiation of a generator in a cryptographically strong group. We introduce and characterize a condition on noisy sources that directly translates to security of our construction in the generic group model. Our condition requires the inner product between the source distribution and all vectors in the null space of the code to be unpredictable.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2021.15
- OA Status
- green
- Related Works
- 9
- OpenAlex ID
- https://openalex.org/W3203522975
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3203522975Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.4230/lipics.itc.2021.15Digital Object Identifier
- Title
-
Code Offset in the ExponentWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Luke Demarest, Benjamin Fuller, Alexander RussellList of authors in order
- Landing page
-
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2021.15Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2021.15Direct OA link when available
- Concepts
-
Entropy (arrow of time), Code word, Computer science, Algorithm, Theoretical computer science, Offset (computer science), Source code, Erasure code, Decoding methods, Exponent, Mathematics, Data mining, Physics, Linguistics, Philosophy, Operating system, Quantum mechanics, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
9Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3203522975 |
|---|---|
| doi | https://doi.org/10.4230/lipics.itc.2021.15 |
| ids.doi | https://doi.org/10.4230/lipics.itc.2021.15 |
| ids.mag | 3203522975 |
| ids.openalex | https://openalex.org/W3203522975 |
| fwci | 0.0 |
| type | article |
| title | Code Offset in the Exponent |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10828 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9941999912261963 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Biometric Identification and Security |
| topics[1].id | https://openalex.org/T12357 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9926999807357788 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Digital Media Forensic Detection |
| topics[2].id | https://openalex.org/T11800 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9887999892234802 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | User Authentication and Security Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C106301342 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6283755302429199 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4117933 |
| concepts[0].display_name | Entropy (arrow of time) |
| concepts[1].id | https://openalex.org/C153207627 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5905686616897583 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q863873 |
| concepts[1].display_name | Code word |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5453046560287476 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C11413529 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5301277041435242 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[3].display_name | Algorithm |
| concepts[4].id | https://openalex.org/C80444323 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5249457359313965 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[4].display_name | Theoretical computer science |
| concepts[5].id | https://openalex.org/C175291020 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5060824751853943 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1156822 |
| concepts[5].display_name | Offset (computer science) |
| concepts[6].id | https://openalex.org/C43126263 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4820995628833771 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q128751 |
| concepts[6].display_name | Source code |
| concepts[7].id | https://openalex.org/C137529215 |
| concepts[7].level | 3 |
| concepts[7].score | 0.47213560342788696 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5385031 |
| concepts[7].display_name | Erasure code |
| concepts[8].id | https://openalex.org/C57273362 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4646097719669342 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q576722 |
| concepts[8].display_name | Decoding methods |
| concepts[9].id | https://openalex.org/C2780388253 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4323786497116089 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5421508 |
| concepts[9].display_name | Exponent |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3747750520706177 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3316505551338196 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C41895202 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[13].display_name | Linguistics |
| concepts[14].id | https://openalex.org/C138885662 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[14].display_name | Philosophy |
| concepts[15].id | https://openalex.org/C111919701 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[15].display_name | Operating system |
| concepts[16].id | https://openalex.org/C62520636 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[16].display_name | Quantum mechanics |
| concepts[17].id | https://openalex.org/C199360897 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[17].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/entropy |
| keywords[0].score | 0.6283755302429199 |
| keywords[0].display_name | Entropy (arrow of time) |
| keywords[1].id | https://openalex.org/keywords/code-word |
| keywords[1].score | 0.5905686616897583 |
| keywords[1].display_name | Code word |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5453046560287476 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/algorithm |
| keywords[3].score | 0.5301277041435242 |
| keywords[3].display_name | Algorithm |
| keywords[4].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[4].score | 0.5249457359313965 |
| keywords[4].display_name | Theoretical computer science |
| keywords[5].id | https://openalex.org/keywords/offset |
| keywords[5].score | 0.5060824751853943 |
| keywords[5].display_name | Offset (computer science) |
| keywords[6].id | https://openalex.org/keywords/source-code |
| keywords[6].score | 0.4820995628833771 |
| keywords[6].display_name | Source code |
| keywords[7].id | https://openalex.org/keywords/erasure-code |
| keywords[7].score | 0.47213560342788696 |
| keywords[7].display_name | Erasure code |
| keywords[8].id | https://openalex.org/keywords/decoding-methods |
| keywords[8].score | 0.4646097719669342 |
| keywords[8].display_name | Decoding methods |
| keywords[9].id | https://openalex.org/keywords/exponent |
| keywords[9].score | 0.4323786497116089 |
| keywords[9].display_name | Exponent |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.3747750520706177 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.3316505551338196 |
| keywords[11].display_name | Data mining |
| language | en |
| locations[0].id | pmh:oai:drops-oai.dagstuhl.de:14334 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402524 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Leibniz-Zentrum für Informatik (Schloss Dagstuhl) |
| locations[0].source.host_organization | https://openalex.org/I2799853480 |
| locations[0].source.host_organization_name | Schloss Dagstuhl – Leibniz Center for Informatics |
| locations[0].source.host_organization_lineage | https://openalex.org/I2799853480 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | InProceedings |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2021.15 |
| locations[1].id | doi:10.4230/lipics.itc.2021.15 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S7407052059 |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Dagstuhl Research Online Publication Server |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.4230/lipics.itc.2021.15 |
| locations[2].id | mag:3203522975 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306420246 |
| locations[2].source.issn | |
| locations[2].source.type | conference |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | International Test Conference |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | International Test Conference |
| locations[2].landing_page_url | https://eprint.iacr.org/2018/1005.pdf |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5061761355 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4317-1198 |
| authorships[0].author.display_name | Luke Demarest |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Luke Demarest |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5078232767 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6450-0088 |
| authorships[1].author.display_name | Benjamin Fuller |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I140172145 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Connecticut, Storrs, United States |
| authorships[1].institutions[0].id | https://openalex.org/I140172145 |
| authorships[1].institutions[0].ror | https://ror.org/02der9h97 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I140172145 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Connecticut |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Benjamin Fuller |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Connecticut, Storrs, United States |
| authorships[2].author.id | https://openalex.org/A5088846595 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8228-6238 |
| authorships[2].author.display_name | Alexander Russell |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I140172145 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Connecticut, Storrs, United States |
| authorships[2].institutions[0].id | https://openalex.org/I140172145 |
| authorships[2].institutions[0].ror | https://ror.org/02der9h97 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I140172145 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Connecticut |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Alexander Russell |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Connecticut, Storrs, United States |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2021.15 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Code Offset in the Exponent |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10828 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9941999912261963 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Biometric Identification and Security |
| related_works | https://openalex.org/W2866416580, https://openalex.org/W1558740691, https://openalex.org/W1605697913, https://openalex.org/W2821366568, https://openalex.org/W2876317827, https://openalex.org/W3020974405, https://openalex.org/W2818611812, https://openalex.org/W2290905433, https://openalex.org/W2396271104 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:drops-oai.dagstuhl.de:14334 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402524 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Leibniz-Zentrum für Informatik (Schloss Dagstuhl) |
| best_oa_location.source.host_organization | https://openalex.org/I2799853480 |
| best_oa_location.source.host_organization_name | Schloss Dagstuhl – Leibniz Center for Informatics |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2799853480 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | InProceedings |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2021.15 |
| primary_location.id | pmh:oai:drops-oai.dagstuhl.de:14334 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402524 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Leibniz-Zentrum für Informatik (Schloss Dagstuhl) |
| primary_location.source.host_organization | https://openalex.org/I2799853480 |
| primary_location.source.host_organization_name | Schloss Dagstuhl – Leibniz Center for Informatics |
| primary_location.source.host_organization_lineage | https://openalex.org/I2799853480 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | InProceedings |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2021.15 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 61, 70 |
| abstract_inverted_index.A | 110 |
| abstract_inverted_index.a | 10, 22, 97, 114, 121, 125, 146, 149, 157 |
| abstract_inverted_index.We | 153 |
| abstract_inverted_index.as | 120 |
| abstract_inverted_index.be | 196 |
| abstract_inverted_index.by | 56, 143 |
| abstract_inverted_index.in | 27, 93, 139, 148, 170, 188 |
| abstract_inverted_index.is | 32, 96, 118 |
| abstract_inverted_index.of | 100, 113, 145, 167, 192 |
| abstract_inverted_index.on | 159 |
| abstract_inverted_index.to | 165, 195 |
| abstract_inverted_index.CCS | 108 |
| abstract_inverted_index.Our | 175 |
| abstract_inverted_index.all | 186 |
| abstract_inverted_index.and | 48, 66, 80, 106, 155, 185 |
| abstract_inverted_index.are | 9, 53 |
| abstract_inverted_index.can | 85 |
| abstract_inverted_index.for | 13, 89, 124 |
| abstract_inverted_index.key | 14, 62 |
| abstract_inverted_index.low | 42, 74 |
| abstract_inverted_index.new | 23 |
| abstract_inverted_index.our | 168 |
| abstract_inverted_index.pad | 123 |
| abstract_inverted_index.the | 28, 33, 57, 94, 101, 129, 140, 171, 178, 182, 189, 193 |
| abstract_inverted_index.Code | 91 |
| abstract_inverted_index.They | 8 |
| abstract_inverted_index.This | 19, 30 |
| abstract_inverted_index.code | 25, 102, 117, 137, 194 |
| abstract_inverted_index.from | 5, 16, 64, 82, 128 |
| abstract_inverted_index.keys | 4 |
| abstract_inverted_index.most | 58 |
| abstract_inverted_index.null | 190 |
| abstract_inverted_index.than | 133 |
| abstract_inverted_index.that | 38, 84, 162 |
| abstract_inverted_index.this | 135 |
| abstract_inverted_index.tool | 12 |
| abstract_inverted_index.used | 119 |
| abstract_inverted_index.with | 45, 76 |
| abstract_inverted_index.work | 20 |
| abstract_inverted_index.Fuzzy | 0 |
| abstract_inverted_index.These | 51 |
| abstract_inverted_index.first | 34 |
| abstract_inverted_index.fuzzy | 36 |
| abstract_inverted_index.group | 98, 173 |
| abstract_inverted_index.inner | 179 |
| abstract_inverted_index.noisy | 6, 130, 160 |
| abstract_inverted_index.space | 191 |
| abstract_inverted_index.value | 127 |
| abstract_inverted_index.which | 71 |
| abstract_inverted_index.(Juels | 105 |
| abstract_inverted_index.1999). | 109 |
| abstract_inverted_index.Rather | 132 |
| abstract_inverted_index.derive | 2 |
| abstract_inverted_index.group. | 152 |
| abstract_inverted_index.linear | 115 |
| abstract_inverted_index.model. | 174 |
| abstract_inverted_index.offset | 26, 92, 103, 138 |
| abstract_inverted_index.random | 111 |
| abstract_inverted_index.source | 183 |
| abstract_inverted_index.stable | 3 |
| abstract_inverted_index.strong | 151 |
| abstract_inverted_index.benefit | 81 |
| abstract_inverted_index.between | 181 |
| abstract_inverted_index.encodes | 142 |
| abstract_inverted_index.entropy | 43, 75 |
| abstract_inverted_index.generic | 172 |
| abstract_inverted_index.product | 180 |
| abstract_inverted_index.sampled | 126 |
| abstract_inverted_index.source. | 131 |
| abstract_inverted_index.sources | 161 |
| abstract_inverted_index.symbols | 47 |
| abstract_inverted_index.vectors | 187 |
| abstract_inverted_index.codeword | 112 |
| abstract_inverted_index.directly | 163 |
| abstract_inverted_index.encoding | 99, 134 |
| abstract_inverted_index.exponent | 95, 141 |
| abstract_inverted_index.leverage | 86 |
| abstract_inverted_index.one-time | 122 |
| abstract_inverted_index.physical | 67 |
| abstract_inverted_index.requires | 177 |
| abstract_inverted_index.reusable | 35 |
| abstract_inverted_index.security | 166 |
| abstract_inverted_index.sources. | 7, 18 |
| abstract_inverted_index.supports | 40 |
| abstract_inverted_index.biometric | 17 |
| abstract_inverted_index.condition | 158, 176 |
| abstract_inverted_index.directly, | 136 |
| abstract_inverted_index.exponent. | 29 |
| abstract_inverted_index.extractor | 37 |
| abstract_inverted_index.functions | 69 |
| abstract_inverted_index.generator | 147 |
| abstract_inverted_index.introduce | 154 |
| abstract_inverted_index.motivated | 55 |
| abstract_inverted_index.pertinent | 59 |
| abstract_inverted_index.typically | 72 |
| abstract_inverted_index.additional | 77 |
| abstract_inverted_index.biometrics | 65 |
| abstract_inverted_index.confidence | 49, 87 |
| abstract_inverted_index.correlated | 46 |
| abstract_inverted_index.derivation | 15, 63 |
| abstract_inverted_index.extractors | 1, 83 |
| abstract_inverted_index.introduces | 21 |
| abstract_inverted_index.properties | 52 |
| abstract_inverted_index.translates | 164 |
| abstract_inverted_index.unclonable | 68 |
| abstract_inverted_index.Wattenberg, | 107 |
| abstract_inverted_index.demonstrate | 73 |
| abstract_inverted_index.efficiency. | 90 |
| abstract_inverted_index.fundamental | 11 |
| abstract_inverted_index.information | 88 |
| abstract_inverted_index.statistical | 78 |
| abstract_inverted_index.structured, | 41 |
| abstract_inverted_index.applications | 60 |
| abstract_inverted_index.characterize | 156 |
| abstract_inverted_index.construction | 31, 104, 169 |
| abstract_inverted_index.correlations | 79 |
| abstract_inverted_index.distribution | 184 |
| abstract_inverted_index.information. | 50 |
| abstract_inverted_index.specifically | 54 |
| abstract_inverted_index.construction, | 24 |
| abstract_inverted_index.distributions | 44 |
| abstract_inverted_index.exponentiation | 144 |
| abstract_inverted_index.simultaneously | 39 |
| abstract_inverted_index.unpredictable. | 197 |
| abstract_inverted_index.error-correcting | 116 |
| abstract_inverted_index.cryptographically | 150 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.12890225 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |