CodeFuse-CommitEval: Towards Benchmarking LLM's Power on Commit Message and Code Change Inconsistency Detection Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.19875
Version control relies on commit messages to convey the rationale for code changes, but these messages are often low quality and, more critically, inconsistent with their diffs-known as message-code inconsistency (MCI). MCIs mislead reviewers, hinder maintenance, contaminate research datasets, and may obscure security patches. Yet, no dedicated benchmark exists to evaluate models for MCI detection. We introduce CODEFUSE-COMMITEVAL, the first benchmark designed for MCI detection using large language models (LLMs). Built on the ApacheCM dataset for diversity and quality, we generate seven types of inconsistent messages through rule-guided mutations of originally consistent commits and apply two-fold validation to verify both positive and negative samples. Using this labeled dataset of message-diff pairs, we evaluate six state-of-the-art open-source LLMs under a vanilla setting and with three augmentation strategies: few-shot prompting, chain-of-thought, and extended context. Results show models detect inconsistent commits more reliably than consistent ones (average Recall 85.95%, Precision 80.28%, Specificity 63.8%); gpt-oss-20B performs best overall but uses over twice the tokens of others. Augmentation effects vary: adjacent context helps larger models but adds noise for smaller ones; few-shot improves accuracy and reduces token use, yet increases universally incorrect predictions; chain-of-thought boosts precision and specificity at the cost of recall and higher token consumption. Type-wise analysis reveals higher detectability for component, file-path, and operation inconsistencies, but lower accuracy and higher token cost for intent-level "purpose" inconsistencies. CODEFUSE-COMMITEVAL provides a rigorous foundation for measuring, comparing, and advancing MCI detection, highlighting the need for richer context and balanced data to capture high-level semantic gaps.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2511.19875
- https://arxiv.org/pdf/2511.19875
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416766960
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416766960Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.19875Digital Object Identifier
- Title
-
CodeFuse-CommitEval: Towards Benchmarking LLM's Power on Commit Message and Code Change Inconsistency DetectionWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-25Full publication date if available
- Authors
-
Qingyu Zhang, Puzhuo Liu, Di Peng, Chenxiong QianList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.19875Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.19875Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.19875Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416766960 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.19875 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.19875 |
| ids.openalex | https://openalex.org/W4416766960 |
| fwci | |
| type | preprint |
| title | CodeFuse-CommitEval: Towards Benchmarking LLM's Power on Commit Message and Code Change Inconsistency Detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.19875 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.19875 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.19875 |
| locations[1].id | doi:10.48550/arxiv.2511.19875 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2511.19875 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5087307843 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-4422-3971 |
| authorships[0].author.display_name | Qingyu Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Qingyu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5037451675 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8995-5924 |
| authorships[1].author.display_name | Puzhuo Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liu, Puzhuo |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5029153155 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8116-5215 |
| authorships[2].author.display_name | Di Peng |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Di, Peng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5111610656 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Chenxiong Qian |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Qian, Chenxiong |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.19875 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-28T00:00:00 |
| display_name | CodeFuse-CommitEval: Towards Benchmarking LLM's Power on Commit Message and Code Change Inconsistency Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T22:56:25.032910 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.19875 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.19875 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.19875 |
| primary_location.id | pmh:oai:arXiv.org:2511.19875 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.19875 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.19875 |
| publication_date | 2025-11-25 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 118, 226 |
| abstract_inverted_index.We | 55 |
| abstract_inverted_index.as | 27 |
| abstract_inverted_index.at | 193 |
| abstract_inverted_index.no | 45 |
| abstract_inverted_index.of | 83, 89, 108, 160, 196 |
| abstract_inverted_index.on | 3, 71 |
| abstract_inverted_index.to | 6, 49, 97, 245 |
| abstract_inverted_index.we | 79, 111 |
| abstract_inverted_index.MCI | 53, 63, 234 |
| abstract_inverted_index.and | 39, 77, 93, 101, 121, 129, 179, 191, 198, 210, 216, 232, 242 |
| abstract_inverted_index.are | 16 |
| abstract_inverted_index.but | 13, 154, 170, 213 |
| abstract_inverted_index.for | 10, 52, 62, 75, 173, 207, 220, 229, 239 |
| abstract_inverted_index.low | 18 |
| abstract_inverted_index.may | 40 |
| abstract_inverted_index.six | 113 |
| abstract_inverted_index.the | 8, 58, 72, 158, 194, 237 |
| abstract_inverted_index.yet | 183 |
| abstract_inverted_index.LLMs | 116 |
| abstract_inverted_index.MCIs | 31 |
| abstract_inverted_index.Yet, | 44 |
| abstract_inverted_index.adds | 171 |
| abstract_inverted_index.and, | 20 |
| abstract_inverted_index.best | 152 |
| abstract_inverted_index.both | 99 |
| abstract_inverted_index.code | 11 |
| abstract_inverted_index.cost | 195, 219 |
| abstract_inverted_index.data | 244 |
| abstract_inverted_index.more | 21, 138 |
| abstract_inverted_index.need | 238 |
| abstract_inverted_index.ones | 142 |
| abstract_inverted_index.over | 156 |
| abstract_inverted_index.show | 133 |
| abstract_inverted_index.than | 140 |
| abstract_inverted_index.this | 105 |
| abstract_inverted_index.use, | 182 |
| abstract_inverted_index.uses | 155 |
| abstract_inverted_index.with | 24, 122 |
| abstract_inverted_index.Built | 70 |
| abstract_inverted_index.Using | 104 |
| abstract_inverted_index.apply | 94 |
| abstract_inverted_index.first | 59 |
| abstract_inverted_index.gaps. | 249 |
| abstract_inverted_index.helps | 167 |
| abstract_inverted_index.large | 66 |
| abstract_inverted_index.lower | 214 |
| abstract_inverted_index.noise | 172 |
| abstract_inverted_index.often | 17 |
| abstract_inverted_index.ones; | 175 |
| abstract_inverted_index.seven | 81 |
| abstract_inverted_index.their | 25 |
| abstract_inverted_index.these | 14 |
| abstract_inverted_index.three | 123 |
| abstract_inverted_index.token | 181, 200, 218 |
| abstract_inverted_index.twice | 157 |
| abstract_inverted_index.types | 82 |
| abstract_inverted_index.under | 117 |
| abstract_inverted_index.using | 65 |
| abstract_inverted_index.vary: | 164 |
| abstract_inverted_index.(MCI). | 30 |
| abstract_inverted_index.Recall | 144 |
| abstract_inverted_index.boosts | 189 |
| abstract_inverted_index.commit | 4 |
| abstract_inverted_index.convey | 7 |
| abstract_inverted_index.detect | 135 |
| abstract_inverted_index.exists | 48 |
| abstract_inverted_index.higher | 199, 205, 217 |
| abstract_inverted_index.hinder | 34 |
| abstract_inverted_index.larger | 168 |
| abstract_inverted_index.models | 51, 68, 134, 169 |
| abstract_inverted_index.pairs, | 110 |
| abstract_inverted_index.recall | 197 |
| abstract_inverted_index.relies | 2 |
| abstract_inverted_index.richer | 240 |
| abstract_inverted_index.tokens | 159 |
| abstract_inverted_index.verify | 98 |
| abstract_inverted_index.(LLMs). | 69 |
| abstract_inverted_index.63.8%); | 149 |
| abstract_inverted_index.80.28%, | 147 |
| abstract_inverted_index.85.95%, | 145 |
| abstract_inverted_index.Results | 132 |
| abstract_inverted_index.Version | 0 |
| abstract_inverted_index.capture | 246 |
| abstract_inverted_index.commits | 92, 137 |
| abstract_inverted_index.context | 166, 241 |
| abstract_inverted_index.control | 1 |
| abstract_inverted_index.dataset | 74, 107 |
| abstract_inverted_index.effects | 163 |
| abstract_inverted_index.labeled | 106 |
| abstract_inverted_index.mislead | 32 |
| abstract_inverted_index.obscure | 41 |
| abstract_inverted_index.others. | 161 |
| abstract_inverted_index.overall | 153 |
| abstract_inverted_index.quality | 19 |
| abstract_inverted_index.reduces | 180 |
| abstract_inverted_index.reveals | 204 |
| abstract_inverted_index.setting | 120 |
| abstract_inverted_index.smaller | 174 |
| abstract_inverted_index.through | 86 |
| abstract_inverted_index.vanilla | 119 |
| abstract_inverted_index.(average | 143 |
| abstract_inverted_index.ApacheCM | 73 |
| abstract_inverted_index.accuracy | 178, 215 |
| abstract_inverted_index.adjacent | 165 |
| abstract_inverted_index.analysis | 203 |
| abstract_inverted_index.balanced | 243 |
| abstract_inverted_index.changes, | 12 |
| abstract_inverted_index.context. | 131 |
| abstract_inverted_index.designed | 61 |
| abstract_inverted_index.evaluate | 50, 112 |
| abstract_inverted_index.extended | 130 |
| abstract_inverted_index.few-shot | 126, 176 |
| abstract_inverted_index.generate | 80 |
| abstract_inverted_index.improves | 177 |
| abstract_inverted_index.language | 67 |
| abstract_inverted_index.messages | 5, 15, 85 |
| abstract_inverted_index.negative | 102 |
| abstract_inverted_index.patches. | 43 |
| abstract_inverted_index.performs | 151 |
| abstract_inverted_index.positive | 100 |
| abstract_inverted_index.provides | 225 |
| abstract_inverted_index.quality, | 78 |
| abstract_inverted_index.reliably | 139 |
| abstract_inverted_index.research | 37 |
| abstract_inverted_index.rigorous | 227 |
| abstract_inverted_index.samples. | 103 |
| abstract_inverted_index.security | 42 |
| abstract_inverted_index.semantic | 248 |
| abstract_inverted_index.two-fold | 95 |
| abstract_inverted_index."purpose" | 222 |
| abstract_inverted_index.Precision | 146 |
| abstract_inverted_index.Type-wise | 202 |
| abstract_inverted_index.advancing | 233 |
| abstract_inverted_index.benchmark | 47, 60 |
| abstract_inverted_index.datasets, | 38 |
| abstract_inverted_index.dedicated | 46 |
| abstract_inverted_index.detection | 64 |
| abstract_inverted_index.diversity | 76 |
| abstract_inverted_index.incorrect | 186 |
| abstract_inverted_index.increases | 184 |
| abstract_inverted_index.introduce | 56 |
| abstract_inverted_index.mutations | 88 |
| abstract_inverted_index.operation | 211 |
| abstract_inverted_index.precision | 190 |
| abstract_inverted_index.rationale | 9 |
| abstract_inverted_index.comparing, | 231 |
| abstract_inverted_index.component, | 208 |
| abstract_inverted_index.consistent | 91, 141 |
| abstract_inverted_index.detection, | 235 |
| abstract_inverted_index.detection. | 54 |
| abstract_inverted_index.file-path, | 209 |
| abstract_inverted_index.foundation | 228 |
| abstract_inverted_index.high-level | 247 |
| abstract_inverted_index.measuring, | 230 |
| abstract_inverted_index.originally | 90 |
| abstract_inverted_index.prompting, | 127 |
| abstract_inverted_index.reviewers, | 33 |
| abstract_inverted_index.validation | 96 |
| abstract_inverted_index.Specificity | 148 |
| abstract_inverted_index.contaminate | 36 |
| abstract_inverted_index.critically, | 22 |
| abstract_inverted_index.diffs-known | 26 |
| abstract_inverted_index.gpt-oss-20B | 150 |
| abstract_inverted_index.open-source | 115 |
| abstract_inverted_index.rule-guided | 87 |
| abstract_inverted_index.specificity | 192 |
| abstract_inverted_index.strategies: | 125 |
| abstract_inverted_index.universally | 185 |
| abstract_inverted_index.Augmentation | 162 |
| abstract_inverted_index.augmentation | 124 |
| abstract_inverted_index.consumption. | 201 |
| abstract_inverted_index.highlighting | 236 |
| abstract_inverted_index.inconsistent | 23, 84, 136 |
| abstract_inverted_index.intent-level | 221 |
| abstract_inverted_index.maintenance, | 35 |
| abstract_inverted_index.message-code | 28 |
| abstract_inverted_index.message-diff | 109 |
| abstract_inverted_index.predictions; | 187 |
| abstract_inverted_index.detectability | 206 |
| abstract_inverted_index.inconsistency | 29 |
| abstract_inverted_index.chain-of-thought | 188 |
| abstract_inverted_index.inconsistencies, | 212 |
| abstract_inverted_index.inconsistencies. | 223 |
| abstract_inverted_index.state-of-the-art | 114 |
| abstract_inverted_index.chain-of-thought, | 128 |
| abstract_inverted_index.CODEFUSE-COMMITEVAL | 224 |
| abstract_inverted_index.CODEFUSE-COMMITEVAL, | 57 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |