CODiT: Conformal Out-of-Distribution Detection in Time-Series Data Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2207.11769
Machine learning models are prone to making incorrect predictions on inputs that are far from the training distribution. This hinders their deployment in safety-critical applications such as autonomous vehicles and healthcare. The detection of a shift from the training distribution of individual datapoints has gained attention. A number of techniques have been proposed for such out-of-distribution (OOD) detection. But in many applications, the inputs to a machine learning model form a temporal sequence. Existing techniques for OOD detection in time-series data either do not exploit temporal relationships in the sequence or do not provide any guarantees on detection. We propose using deviation from the in-distribution temporal equivariance as the non-conformity measure in conformal anomaly detection framework for OOD detection in time-series data.Computing independent predictions from multiple conformal detectors based on the proposed measure and combining these predictions by Fisher's method leads to the proposed detector CODiT with guarantees on false detection in time-series data. We illustrate the efficacy of CODiT by achieving state-of-the-art results on computer vision datasets in autonomous driving. We also show that CODiT can be used for OOD detection in non-vision datasets by performing experiments on the physiological GAIT sensory dataset. Code, data, and trained models are available at https://github.com/kaustubhsridhar/time-series-OOD.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2207.11769
- https://arxiv.org/pdf/2207.11769
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4288055423
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4288055423Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2207.11769Digital Object Identifier
- Title
-
CODiT: Conformal Out-of-Distribution Detection in Time-Series DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-07-24Full publication date if available
- Authors
-
Ramneet Kaur, Kaustubh Sridhar, Sangdon Park, Susmit Jha, Anirban Roy, Oleg Sokolsky, Insup LeeList of authors in order
- Landing page
-
https://arxiv.org/abs/2207.11769Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2207.11769Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2207.11769Direct OA link when available
- Concepts
-
Computer science, Anomaly detection, Series (stratigraphy), Artificial intelligence, Measure (data warehouse), Data mining, Conformal map, Exploit, Machine learning, Pattern recognition (psychology), Mathematics, Biology, Mathematical analysis, Computer security, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 1, 2022: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4288055423 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2207.11769 |
| ids.doi | https://doi.org/10.48550/arxiv.2207.11769 |
| ids.openalex | https://openalex.org/W4288055423 |
| fwci | |
| type | preprint |
| title | CODiT: Conformal Out-of-Distribution Detection in Time-Series Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T11667 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9789999723434448 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Advanced Chemical Sensor Technologies |
| topics[2].id | https://openalex.org/T12120 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9628999829292297 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Air Quality Monitoring and Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7310728430747986 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C739882 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6404935717582703 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[1].display_name | Anomaly detection |
| concepts[2].id | https://openalex.org/C143724316 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5075063109397888 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[2].display_name | Series (stratigraphy) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5046378374099731 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2780009758 |
| concepts[4].level | 2 |
| concepts[4].score | 0.458574116230011 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6804172 |
| concepts[4].display_name | Measure (data warehouse) |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.45537763833999634 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C98214594 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4313027560710907 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q850275 |
| concepts[6].display_name | Conformal map |
| concepts[7].id | https://openalex.org/C165696696 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4161057770252228 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11287 |
| concepts[7].display_name | Exploit |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4114346206188202 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.37807154655456543 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.08820575475692749 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C134306372 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[12].display_name | Mathematical analysis |
| concepts[13].id | https://openalex.org/C38652104 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[13].display_name | Computer security |
| concepts[14].id | https://openalex.org/C151730666 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[14].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7310728430747986 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/anomaly-detection |
| keywords[1].score | 0.6404935717582703 |
| keywords[1].display_name | Anomaly detection |
| keywords[2].id | https://openalex.org/keywords/series |
| keywords[2].score | 0.5075063109397888 |
| keywords[2].display_name | Series (stratigraphy) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5046378374099731 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/measure |
| keywords[4].score | 0.458574116230011 |
| keywords[4].display_name | Measure (data warehouse) |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.45537763833999634 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/conformal-map |
| keywords[6].score | 0.4313027560710907 |
| keywords[6].display_name | Conformal map |
| keywords[7].id | https://openalex.org/keywords/exploit |
| keywords[7].score | 0.4161057770252228 |
| keywords[7].display_name | Exploit |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.4114346206188202 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.37807154655456543 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.08820575475692749 |
| keywords[10].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2207.11769 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2207.11769 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2207.11769 |
| locations[1].id | doi:10.48550/arxiv.2207.11769 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2207.11769 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5108816777 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ramneet Kaur |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kaur, Ramneet |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5043161001 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7852-7043 |
| authorships[1].author.display_name | Kaustubh Sridhar |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sridhar, Kaustubh |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5014443062 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5392-749X |
| authorships[2].author.display_name | Sangdon Park |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Park, Sangdon |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5035902535 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5983-9095 |
| authorships[3].author.display_name | Susmit Jha |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jha, Susmit |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101549373 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5729-0246 |
| authorships[4].author.display_name | Anirban Roy |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Roy, Anirban |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5082105260 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5282-0658 |
| authorships[5].author.display_name | Oleg Sokolsky |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sokolsky, Oleg |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5030456600 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2672-1132 |
| authorships[6].author.display_name | Insup Lee |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Lee, Insup |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2207.11769 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | CODiT: Conformal Out-of-Distribution Detection in Time-Series Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W17155033, https://openalex.org/W3207760230, https://openalex.org/W1496222301, https://openalex.org/W1590307681, https://openalex.org/W2536018345, https://openalex.org/W4312814274, https://openalex.org/W4285370786, https://openalex.org/W2296488620, https://openalex.org/W2358353312, https://openalex.org/W2353836703 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2207.11769 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2207.11769 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2207.11769 |
| primary_location.id | pmh:oai:arXiv.org:2207.11769 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2207.11769 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2207.11769 |
| publication_date | 2022-07-24 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 46 |
| abstract_inverted_index.a | 34, 65, 70 |
| abstract_inverted_index.We | 98, 154, 171 |
| abstract_inverted_index.as | 26, 107 |
| abstract_inverted_index.at | 201 |
| abstract_inverted_index.be | 177 |
| abstract_inverted_index.by | 137, 160, 185 |
| abstract_inverted_index.do | 82, 91 |
| abstract_inverted_index.in | 22, 59, 78, 87, 111, 119, 151, 168, 182 |
| abstract_inverted_index.of | 33, 40, 48, 158 |
| abstract_inverted_index.on | 9, 96, 129, 148, 164, 188 |
| abstract_inverted_index.or | 90 |
| abstract_inverted_index.to | 5, 64, 141 |
| abstract_inverted_index.But | 58 |
| abstract_inverted_index.OOD | 76, 117, 180 |
| abstract_inverted_index.The | 31 |
| abstract_inverted_index.and | 29, 133, 196 |
| abstract_inverted_index.any | 94 |
| abstract_inverted_index.are | 3, 12, 199 |
| abstract_inverted_index.can | 176 |
| abstract_inverted_index.far | 13 |
| abstract_inverted_index.for | 53, 75, 116, 179 |
| abstract_inverted_index.has | 43 |
| abstract_inverted_index.not | 83, 92 |
| abstract_inverted_index.the | 15, 37, 62, 88, 103, 108, 130, 142, 156, 189 |
| abstract_inverted_index.GAIT | 191 |
| abstract_inverted_index.This | 18 |
| abstract_inverted_index.also | 172 |
| abstract_inverted_index.been | 51 |
| abstract_inverted_index.data | 80 |
| abstract_inverted_index.form | 69 |
| abstract_inverted_index.from | 14, 36, 102, 124 |
| abstract_inverted_index.have | 50 |
| abstract_inverted_index.many | 60 |
| abstract_inverted_index.show | 173 |
| abstract_inverted_index.such | 25, 54 |
| abstract_inverted_index.that | 11, 174 |
| abstract_inverted_index.used | 178 |
| abstract_inverted_index.with | 146 |
| abstract_inverted_index.(OOD) | 56 |
| abstract_inverted_index.CODiT | 145, 159, 175 |
| abstract_inverted_index.Code, | 194 |
| abstract_inverted_index.based | 128 |
| abstract_inverted_index.data, | 195 |
| abstract_inverted_index.data. | 153 |
| abstract_inverted_index.false | 149 |
| abstract_inverted_index.leads | 140 |
| abstract_inverted_index.model | 68 |
| abstract_inverted_index.prone | 4 |
| abstract_inverted_index.shift | 35 |
| abstract_inverted_index.their | 20 |
| abstract_inverted_index.these | 135 |
| abstract_inverted_index.using | 100 |
| abstract_inverted_index.either | 81 |
| abstract_inverted_index.gained | 44 |
| abstract_inverted_index.inputs | 10, 63 |
| abstract_inverted_index.making | 6 |
| abstract_inverted_index.method | 139 |
| abstract_inverted_index.models | 2, 198 |
| abstract_inverted_index.number | 47 |
| abstract_inverted_index.vision | 166 |
| abstract_inverted_index.Machine | 0 |
| abstract_inverted_index.anomaly | 113 |
| abstract_inverted_index.exploit | 84 |
| abstract_inverted_index.hinders | 19 |
| abstract_inverted_index.machine | 66 |
| abstract_inverted_index.measure | 110, 132 |
| abstract_inverted_index.propose | 99 |
| abstract_inverted_index.provide | 93 |
| abstract_inverted_index.results | 163 |
| abstract_inverted_index.sensory | 192 |
| abstract_inverted_index.trained | 197 |
| abstract_inverted_index.Existing | 73 |
| abstract_inverted_index.Fisher's | 138 |
| abstract_inverted_index.computer | 165 |
| abstract_inverted_index.dataset. | 193 |
| abstract_inverted_index.datasets | 167, 184 |
| abstract_inverted_index.detector | 144 |
| abstract_inverted_index.driving. | 170 |
| abstract_inverted_index.efficacy | 157 |
| abstract_inverted_index.learning | 1, 67 |
| abstract_inverted_index.multiple | 125 |
| abstract_inverted_index.proposed | 52, 131, 143 |
| abstract_inverted_index.sequence | 89 |
| abstract_inverted_index.temporal | 71, 85, 105 |
| abstract_inverted_index.training | 16, 38 |
| abstract_inverted_index.vehicles | 28 |
| abstract_inverted_index.achieving | 161 |
| abstract_inverted_index.available | 200 |
| abstract_inverted_index.combining | 134 |
| abstract_inverted_index.conformal | 112, 126 |
| abstract_inverted_index.detection | 32, 77, 114, 118, 150, 181 |
| abstract_inverted_index.detectors | 127 |
| abstract_inverted_index.deviation | 101 |
| abstract_inverted_index.framework | 115 |
| abstract_inverted_index.incorrect | 7 |
| abstract_inverted_index.sequence. | 72 |
| abstract_inverted_index.attention. | 45 |
| abstract_inverted_index.autonomous | 27, 169 |
| abstract_inverted_index.datapoints | 42 |
| abstract_inverted_index.deployment | 21 |
| abstract_inverted_index.detection. | 57, 97 |
| abstract_inverted_index.guarantees | 95, 147 |
| abstract_inverted_index.illustrate | 155 |
| abstract_inverted_index.individual | 41 |
| abstract_inverted_index.non-vision | 183 |
| abstract_inverted_index.performing | 186 |
| abstract_inverted_index.techniques | 49, 74 |
| abstract_inverted_index.experiments | 187 |
| abstract_inverted_index.healthcare. | 30 |
| abstract_inverted_index.independent | 122 |
| abstract_inverted_index.predictions | 8, 123, 136 |
| abstract_inverted_index.time-series | 79, 120, 152 |
| abstract_inverted_index.applications | 24 |
| abstract_inverted_index.distribution | 39 |
| abstract_inverted_index.equivariance | 106 |
| abstract_inverted_index.applications, | 61 |
| abstract_inverted_index.distribution. | 17 |
| abstract_inverted_index.physiological | 190 |
| abstract_inverted_index.relationships | 86 |
| abstract_inverted_index.data.Computing | 121 |
| abstract_inverted_index.non-conformity | 109 |
| abstract_inverted_index.in-distribution | 104 |
| abstract_inverted_index.safety-critical | 23 |
| abstract_inverted_index.state-of-the-art | 162 |
| abstract_inverted_index.out-of-distribution | 55 |
| abstract_inverted_index.https://github.com/kaustubhsridhar/time-series-OOD. | 202 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |