CogniSNN: A First Exploration to Random Graph Architecture based Spiking Neural Networks with Enhanced Expandability and Neuroplasticity Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2505.05992
Despite advances in spiking neural networks (SNNs) in numerous tasks, their architectures remain highly similar to traditional artificial neural networks (ANNs), restricting their ability to mimic natural connections between biological neurons. This paper develops a new modeling paradigm for SNN with random graph architecture (RGA), termed Cognition-aware SNN (CogniSNN). Furthermore, we improve the expandability and neuroplasticity of CogniSNN by introducing a modified spiking residual neural node (ResNode) to counteract network degradation in deeper graph pathways, as well as a critical path-based algorithm that enables CogniSNN to perform continual learning on new tasks leveraging the features of the data and the RGA learned in the old task. Experiments show that CogniSNN with re-designed ResNode performs outstandingly in neuromorphic datasets with fewer parameters, achieving 95.5% precision in the DVS-Gesture dataset with only 5 timesteps. The critical path-based approach decreases 3% to 5% forgetting while maintaining expected performance in learning new tasks that are similar to or distinct from the old ones. This study showcases the potential of RGA-based SNN and paves a new path for biologically inspired networks based on graph theory.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2505.05992
- https://arxiv.org/pdf/2505.05992
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4417085843
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417085843Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2505.05992Digital Object Identifier
- Title
-
CogniSNN: A First Exploration to Random Graph Architecture based Spiking Neural Networks with Enhanced Expandability and NeuroplasticityWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-09Full publication date if available
- Authors
-
Yongsheng Huang, Peibo Duan, Kai Sun, Changsheng Zhang, Bin Zhang, Mingkun XuList of authors in order
- Landing page
-
https://arxiv.org/abs/2505.05992Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2505.05992Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.05992Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417085843 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2505.05992 |
| ids.doi | https://doi.org/10.48550/arxiv.2505.05992 |
| ids.openalex | https://openalex.org/W4417085843 |
| fwci | |
| type | preprint |
| title | CogniSNN: A First Exploration to Random Graph Architecture based Spiking Neural Networks with Enhanced Expandability and Neuroplasticity |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2505.05992 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2505.05992 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2505.05992 |
| locations[1].id | doi:10.48550/arxiv.2505.05992 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2505.05992 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101675965 |
| authorships[0].author.orcid | https://orcid.org/0009-0001-6620-4343 |
| authorships[0].author.display_name | Yongsheng Huang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Huang, Yongsheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5010309828 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0686-8404 |
| authorships[1].author.display_name | Peibo Duan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Duan, Peibo |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100408904 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1425-1738 |
| authorships[2].author.display_name | Kai Sun |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sun, Kai |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100687487 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2349-3138 |
| authorships[3].author.display_name | Changsheng Zhang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhang, Changsheng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100392843 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4879-0211 |
| authorships[4].author.display_name | Bin Zhang |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Zhang, Bin |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5030409594 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4329-8735 |
| authorships[5].author.display_name | Mingkun Xu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xu, Mingkun |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.05992 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | CogniSNN: A First Exploration to Random Graph Architecture based Spiking Neural Networks with Enhanced Expandability and Neuroplasticity |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-07T09:55:28.804818 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.05992 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.05992 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.05992 |
| primary_location.id | pmh:oai:arXiv.org:2505.05992 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2505.05992 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2505.05992 |
| publication_date | 2025-05-09 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.5 | 130 |
| abstract_inverted_index.a | 34, 60, 78, 169 |
| abstract_inverted_index.3% | 137 |
| abstract_inverted_index.5% | 139 |
| abstract_inverted_index.as | 75, 77 |
| abstract_inverted_index.by | 58 |
| abstract_inverted_index.in | 2, 7, 71, 102, 115, 124, 145 |
| abstract_inverted_index.of | 56, 95, 164 |
| abstract_inverted_index.on | 89, 177 |
| abstract_inverted_index.or | 153 |
| abstract_inverted_index.to | 15, 24, 67, 85, 138, 152 |
| abstract_inverted_index.we | 50 |
| abstract_inverted_index.RGA | 100 |
| abstract_inverted_index.SNN | 39, 47, 166 |
| abstract_inverted_index.The | 132 |
| abstract_inverted_index.and | 54, 98, 167 |
| abstract_inverted_index.are | 150 |
| abstract_inverted_index.for | 38, 172 |
| abstract_inverted_index.new | 35, 90, 147, 170 |
| abstract_inverted_index.old | 104, 157 |
| abstract_inverted_index.the | 52, 93, 96, 99, 103, 125, 156, 162 |
| abstract_inverted_index.This | 31, 159 |
| abstract_inverted_index.data | 97 |
| abstract_inverted_index.from | 155 |
| abstract_inverted_index.node | 65 |
| abstract_inverted_index.only | 129 |
| abstract_inverted_index.path | 171 |
| abstract_inverted_index.show | 107 |
| abstract_inverted_index.that | 82, 108, 149 |
| abstract_inverted_index.well | 76 |
| abstract_inverted_index.with | 40, 110, 118, 128 |
| abstract_inverted_index.95.5% | 122 |
| abstract_inverted_index.based | 176 |
| abstract_inverted_index.fewer | 119 |
| abstract_inverted_index.graph | 42, 73, 178 |
| abstract_inverted_index.mimic | 25 |
| abstract_inverted_index.ones. | 158 |
| abstract_inverted_index.paper | 32 |
| abstract_inverted_index.paves | 168 |
| abstract_inverted_index.study | 160 |
| abstract_inverted_index.task. | 105 |
| abstract_inverted_index.tasks | 91, 148 |
| abstract_inverted_index.their | 10, 22 |
| abstract_inverted_index.while | 141 |
| abstract_inverted_index.(RGA), | 44 |
| abstract_inverted_index.(SNNs) | 6 |
| abstract_inverted_index.deeper | 72 |
| abstract_inverted_index.highly | 13 |
| abstract_inverted_index.neural | 4, 18, 64 |
| abstract_inverted_index.random | 41 |
| abstract_inverted_index.remain | 12 |
| abstract_inverted_index.tasks, | 9 |
| abstract_inverted_index.termed | 45 |
| abstract_inverted_index.(ANNs), | 20 |
| abstract_inverted_index.Despite | 0 |
| abstract_inverted_index.ResNode | 112 |
| abstract_inverted_index.ability | 23 |
| abstract_inverted_index.between | 28 |
| abstract_inverted_index.dataset | 127 |
| abstract_inverted_index.enables | 83 |
| abstract_inverted_index.improve | 51 |
| abstract_inverted_index.learned | 101 |
| abstract_inverted_index.natural | 26 |
| abstract_inverted_index.network | 69 |
| abstract_inverted_index.perform | 86 |
| abstract_inverted_index.similar | 14, 151 |
| abstract_inverted_index.spiking | 3, 62 |
| abstract_inverted_index.theory. | 179 |
| abstract_inverted_index.CogniSNN | 57, 84, 109 |
| abstract_inverted_index.advances | 1 |
| abstract_inverted_index.approach | 135 |
| abstract_inverted_index.critical | 79, 133 |
| abstract_inverted_index.datasets | 117 |
| abstract_inverted_index.develops | 33 |
| abstract_inverted_index.distinct | 154 |
| abstract_inverted_index.expected | 143 |
| abstract_inverted_index.features | 94 |
| abstract_inverted_index.inspired | 174 |
| abstract_inverted_index.learning | 88, 146 |
| abstract_inverted_index.modeling | 36 |
| abstract_inverted_index.modified | 61 |
| abstract_inverted_index.networks | 5, 19, 175 |
| abstract_inverted_index.neurons. | 30 |
| abstract_inverted_index.numerous | 8 |
| abstract_inverted_index.paradigm | 37 |
| abstract_inverted_index.performs | 113 |
| abstract_inverted_index.residual | 63 |
| abstract_inverted_index.(ResNode) | 66 |
| abstract_inverted_index.RGA-based | 165 |
| abstract_inverted_index.achieving | 121 |
| abstract_inverted_index.algorithm | 81 |
| abstract_inverted_index.continual | 87 |
| abstract_inverted_index.decreases | 136 |
| abstract_inverted_index.pathways, | 74 |
| abstract_inverted_index.potential | 163 |
| abstract_inverted_index.precision | 123 |
| abstract_inverted_index.showcases | 161 |
| abstract_inverted_index.artificial | 17 |
| abstract_inverted_index.biological | 29 |
| abstract_inverted_index.counteract | 68 |
| abstract_inverted_index.forgetting | 140 |
| abstract_inverted_index.leveraging | 92 |
| abstract_inverted_index.path-based | 80, 134 |
| abstract_inverted_index.timesteps. | 131 |
| abstract_inverted_index.(CogniSNN). | 48 |
| abstract_inverted_index.DVS-Gesture | 126 |
| abstract_inverted_index.Experiments | 106 |
| abstract_inverted_index.connections | 27 |
| abstract_inverted_index.degradation | 70 |
| abstract_inverted_index.introducing | 59 |
| abstract_inverted_index.maintaining | 142 |
| abstract_inverted_index.parameters, | 120 |
| abstract_inverted_index.performance | 144 |
| abstract_inverted_index.re-designed | 111 |
| abstract_inverted_index.restricting | 21 |
| abstract_inverted_index.traditional | 16 |
| abstract_inverted_index.Furthermore, | 49 |
| abstract_inverted_index.architecture | 43 |
| abstract_inverted_index.biologically | 173 |
| abstract_inverted_index.neuromorphic | 116 |
| abstract_inverted_index.architectures | 11 |
| abstract_inverted_index.expandability | 53 |
| abstract_inverted_index.outstandingly | 114 |
| abstract_inverted_index.Cognition-aware | 46 |
| abstract_inverted_index.neuroplasticity | 55 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |