Collaborative Neural Network Algorithm for Event-Driven Deployment in Wireless Sensor and Robot Networks Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.3390/s20102779
Wireless sensor and robot networks (WSRNs) often work in complex and dangerous environments that are subject to many constraints. For obtaining a better monitoring performance, it is necessary to deploy different types of sensors for various complex environments and constraints. The traditional event-driven deployment algorithm is only applicable to a single type of monitoring scenario, so cannot effectively adapt to different types of monitoring scenarios at the same time. In this paper, a multi-constrained event-driven deployment model is proposed based on the maximum entropy function, which transforms the complex event-driven deployment problem into two continuously differentiable single-objective sub-problems. Then, a collaborative neural network (CONN) event-driven deployment algorithm is proposed based on neural network methods. The CONN event-driven deployment algorithm effectively solves the problem that it is difficult to obtain a large amount of sensor data and environmental information in a complex and dangerous monitoring environment. Unlike traditional deployment methods, the CONN algorithm can adaptively provide an optimal deployment solution for a variety of complex monitoring environments. This greatly reduces the time and cost involved in adapting to different monitoring environments. Finally, a large number of experiments verify the performance of the CONN algorithm, which can be adapted to a variety of complex application scenarios.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s20102779
- https://www.mdpi.com/1424-8220/20/10/2779/pdf?version=1589622966
- OA Status
- gold
- Cited By
- 5
- References
- 51
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3025561182
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3025561182Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s20102779Digital Object Identifier
- Title
-
Collaborative Neural Network Algorithm for Event-Driven Deployment in Wireless Sensor and Robot NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-05-13Full publication date if available
- Authors
-
Yaoming Zhuang, Chengdong Wu, Hao Wu, Zuyuan Zhang, Yuan Gao, Li LiList of authors in order
- Landing page
-
https://doi.org/10.3390/s20102779Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/20/10/2779/pdf?version=1589622966Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/20/10/2779/pdf?version=1589622966Direct OA link when available
- Concepts
-
Software deployment, Wireless sensor network, Computer science, Event (particle physics), Artificial neural network, Real-time computing, Distributed computing, Algorithm, Artificial intelligence, Computer network, Operating system, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 2, 2022: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
51Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3025561182 |
|---|---|
| doi | https://doi.org/10.3390/s20102779 |
| ids.doi | https://doi.org/10.3390/s20102779 |
| ids.mag | 3025561182 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/32414214 |
| ids.openalex | https://openalex.org/W3025561182 |
| fwci | 0.67812976 |
| type | article |
| title | Collaborative Neural Network Algorithm for Event-Driven Deployment in Wireless Sensor and Robot Networks |
| awards[0].id | https://openalex.org/G2428904493 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 61701101, 61973093, U1713216, 61901098, 61971118, 61973063 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G2749577883 |
| awards[1].funder_id | https://openalex.org/F4320335787 |
| awards[1].display_name | |
| awards[1].funder_award_id | N2026006, N2011001, N2026005, N181602014, N2026004, N2026001,N172604004 |
| awards[1].funder_display_name | Fundamental Research Funds for the Central Universities |
| biblio.issue | 10 |
| biblio.volume | 20 |
| biblio.last_page | 2779 |
| biblio.first_page | 2779 |
| topics[0].id | https://openalex.org/T10080 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Energy Efficient Wireless Sensor Networks |
| topics[1].id | https://openalex.org/T10273 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9911999702453613 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | IoT and Edge/Fog Computing |
| topics[2].id | https://openalex.org/T12697 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9858999848365784 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2312 |
| topics[2].subfield.display_name | Water Science and Technology |
| topics[2].display_name | Water Quality Monitoring Technologies |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335787 |
| funders[1].ror | |
| funders[1].display_name | Fundamental Research Funds for the Central Universities |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C105339364 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8791121244430542 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2297740 |
| concepts[0].display_name | Software deployment |
| concepts[1].id | https://openalex.org/C24590314 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6768614649772644 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q336038 |
| concepts[1].display_name | Wireless sensor network |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6513569951057434 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2779662365 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6054514646530151 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5416694 |
| concepts[3].display_name | Event (particle physics) |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5632050633430481 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C79403827 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5297898650169373 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[5].display_name | Real-time computing |
| concepts[6].id | https://openalex.org/C120314980 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4438713788986206 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[6].display_name | Distributed computing |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4321731626987457 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.29008275270462036 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C31258907 |
| concepts[9].level | 1 |
| concepts[9].score | 0.15291425585746765 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[9].display_name | Computer network |
| concepts[10].id | https://openalex.org/C111919701 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[10].display_name | Operating system |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C62520636 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[12].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/software-deployment |
| keywords[0].score | 0.8791121244430542 |
| keywords[0].display_name | Software deployment |
| keywords[1].id | https://openalex.org/keywords/wireless-sensor-network |
| keywords[1].score | 0.6768614649772644 |
| keywords[1].display_name | Wireless sensor network |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6513569951057434 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/event |
| keywords[3].score | 0.6054514646530151 |
| keywords[3].display_name | Event (particle physics) |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.5632050633430481 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/real-time-computing |
| keywords[5].score | 0.5297898650169373 |
| keywords[5].display_name | Real-time computing |
| keywords[6].id | https://openalex.org/keywords/distributed-computing |
| keywords[6].score | 0.4438713788986206 |
| keywords[6].display_name | Distributed computing |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.4321731626987457 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.29008275270462036 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/computer-network |
| keywords[9].score | 0.15291425585746765 |
| keywords[9].display_name | Computer network |
| language | en |
| locations[0].id | doi:10.3390/s20102779 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/20/10/2779/pdf?version=1589622966 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s20102779 |
| locations[1].id | pmid:32414214 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/32414214 |
| locations[2].id | pmh:oai:doaj.org/article:e52aaa5281f2476d9d0f6f9759ae07af |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 20, Iss 10, p 2779 (2020) |
| locations[2].landing_page_url | https://doaj.org/article/e52aaa5281f2476d9d0f6f9759ae07af |
| locations[3].id | pmh:oai:mdpi.com:/1424-8220/20/10/2779/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors |
| locations[3].landing_page_url | http://dx.doi.org/10.3390/s20102779 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:7385723 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors (Basel) |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/7385723 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5090121806 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8815-0801 |
| authorships[0].author.display_name | Yaoming Zhuang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110819, China |
| authorships[0].institutions[0].id | https://openalex.org/I9224756 |
| authorships[0].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Northeastern University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yaoming Zhuang |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110819, China |
| authorships[1].author.id | https://openalex.org/A5000383993 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9906-5493 |
| authorships[1].author.display_name | Chengdong Wu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110819, China |
| authorships[1].institutions[0].id | https://openalex.org/I9224756 |
| authorships[1].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Northeastern University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chengdong Wu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110819, China |
| authorships[2].author.id | https://openalex.org/A5049068235 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5526-8827 |
| authorships[2].author.display_name | Hao Wu |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I129604602 |
| authorships[2].affiliations[0].raw_affiliation_string | Engineering Faculty, University of Sydney, Sydney, NSW 2006, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I129604602 |
| authorships[2].institutions[0].ror | https://ror.org/0384j8v12 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I129604602 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | The University of Sydney |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hao Wu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Engineering Faculty, University of Sydney, Sydney, NSW 2006, Australia |
| authorships[3].author.id | https://openalex.org/A5004425960 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5795-9771 |
| authorships[3].author.display_name | Zuyuan Zhang |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I8692664 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Compute Science, University of Oklahoma at Norman, Norman, OK 73070, USA |
| authorships[3].institutions[0].id | https://openalex.org/I8692664 |
| authorships[3].institutions[0].ror | https://ror.org/02aqsxs83 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I8692664 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Oklahoma |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zuyuan Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Compute Science, University of Oklahoma at Norman, Norman, OK 73070, USA |
| authorships[4].author.id | https://openalex.org/A5070703807 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3376-8433 |
| authorships[4].author.display_name | Yuan Gao |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Information Science and Engineering, Northeastern University, Shenyang 110819, China |
| authorships[4].institutions[0].id | https://openalex.org/I9224756 |
| authorships[4].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Northeastern University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yuan Gao |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Information Science and Engineering, Northeastern University, Shenyang 110819, China |
| authorships[5].author.id | https://openalex.org/A5104004412 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Li Li |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[5].affiliations[0].raw_affiliation_string | JangHo School of Architecture, Northeastern University, Shenyang 110819, China |
| authorships[5].institutions[0].id | https://openalex.org/I9224756 |
| authorships[5].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Northeastern University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Li Li |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | JangHo School of Architecture, Northeastern University, Shenyang 110819, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/20/10/2779/pdf?version=1589622966 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Collaborative Neural Network Algorithm for Event-Driven Deployment in Wireless Sensor and Robot Networks |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10080 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Energy Efficient Wireless Sensor Networks |
| related_works | https://openalex.org/W2770234245, https://openalex.org/W96612179, https://openalex.org/W4229499248, https://openalex.org/W2566006169, https://openalex.org/W1567818861, https://openalex.org/W2987774938, https://openalex.org/W4256492088, https://openalex.org/W632915154, https://openalex.org/W2055733372, https://openalex.org/W2079312091 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/s20102779 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/20/10/2779/pdf?version=1589622966 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s20102779 |
| primary_location.id | doi:10.3390/s20102779 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/20/10/2779/pdf?version=1589622966 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s20102779 |
| publication_date | 2020-05-13 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W1446493142, https://openalex.org/W1611562685, https://openalex.org/W2136938266, https://openalex.org/W6754756756, https://openalex.org/W2766177435, https://openalex.org/W1483823870, https://openalex.org/W4241446463, https://openalex.org/W1971334585, https://openalex.org/W320072655, https://openalex.org/W2219528589, https://openalex.org/W2898731180, https://openalex.org/W2509355099, https://openalex.org/W2122657744, https://openalex.org/W2312295746, https://openalex.org/W2917072517, https://openalex.org/W2624621236, https://openalex.org/W2902259735, https://openalex.org/W2907817985, https://openalex.org/W2771281336, https://openalex.org/W2767171138, https://openalex.org/W2967157055, https://openalex.org/W2936484665, https://openalex.org/W2964034232, https://openalex.org/W2561888713, https://openalex.org/W2624019906, https://openalex.org/W2744922537, https://openalex.org/W2586807559, https://openalex.org/W1974536675, https://openalex.org/W2886577121, https://openalex.org/W2898466634, https://openalex.org/W2895206136, https://openalex.org/W2538088269, https://openalex.org/W1983981859, https://openalex.org/W2086386950, https://openalex.org/W2585613152, https://openalex.org/W6744388112, https://openalex.org/W2000007055, https://openalex.org/W2501359160, https://openalex.org/W2010485637, https://openalex.org/W6696287502, https://openalex.org/W2052123709, https://openalex.org/W6656696794, https://openalex.org/W2004586020, https://openalex.org/W1995053973, https://openalex.org/W2024370928, https://openalex.org/W2890714978, https://openalex.org/W2596655693, https://openalex.org/W2752272666, https://openalex.org/W2068292967, https://openalex.org/W1998376940, https://openalex.org/W2286641976 |
| referenced_works_count | 51 |
| abstract_inverted_index.a | 21, 49, 72, 99, 129, 139, 160, 181, 198 |
| abstract_inverted_index.In | 69 |
| abstract_inverted_index.an | 155 |
| abstract_inverted_index.at | 65 |
| abstract_inverted_index.be | 195 |
| abstract_inverted_index.in | 8, 138, 174 |
| abstract_inverted_index.is | 26, 45, 77, 107, 125 |
| abstract_inverted_index.it | 25, 124 |
| abstract_inverted_index.of | 32, 52, 62, 132, 162, 184, 189, 200 |
| abstract_inverted_index.on | 80, 110 |
| abstract_inverted_index.so | 55 |
| abstract_inverted_index.to | 16, 28, 48, 59, 127, 176, 197 |
| abstract_inverted_index.For | 19 |
| abstract_inverted_index.The | 40, 114 |
| abstract_inverted_index.and | 2, 10, 38, 135, 141, 171 |
| abstract_inverted_index.are | 14 |
| abstract_inverted_index.can | 152, 194 |
| abstract_inverted_index.for | 34, 159 |
| abstract_inverted_index.the | 66, 81, 87, 121, 149, 169, 187, 190 |
| abstract_inverted_index.two | 93 |
| abstract_inverted_index.CONN | 115, 150, 191 |
| abstract_inverted_index.This | 166 |
| abstract_inverted_index.cost | 172 |
| abstract_inverted_index.data | 134 |
| abstract_inverted_index.into | 92 |
| abstract_inverted_index.many | 17 |
| abstract_inverted_index.only | 46 |
| abstract_inverted_index.same | 67 |
| abstract_inverted_index.that | 13, 123 |
| abstract_inverted_index.this | 70 |
| abstract_inverted_index.time | 170 |
| abstract_inverted_index.type | 51 |
| abstract_inverted_index.work | 7 |
| abstract_inverted_index.Then, | 98 |
| abstract_inverted_index.adapt | 58 |
| abstract_inverted_index.based | 79, 109 |
| abstract_inverted_index.large | 130, 182 |
| abstract_inverted_index.model | 76 |
| abstract_inverted_index.often | 6 |
| abstract_inverted_index.robot | 3 |
| abstract_inverted_index.time. | 68 |
| abstract_inverted_index.types | 31, 61 |
| abstract_inverted_index.which | 85, 193 |
| abstract_inverted_index.(CONN) | 103 |
| abstract_inverted_index.Unlike | 145 |
| abstract_inverted_index.amount | 131 |
| abstract_inverted_index.better | 22 |
| abstract_inverted_index.cannot | 56 |
| abstract_inverted_index.deploy | 29 |
| abstract_inverted_index.neural | 101, 111 |
| abstract_inverted_index.number | 183 |
| abstract_inverted_index.obtain | 128 |
| abstract_inverted_index.paper, | 71 |
| abstract_inverted_index.sensor | 1, 133 |
| abstract_inverted_index.single | 50 |
| abstract_inverted_index.solves | 120 |
| abstract_inverted_index.verify | 186 |
| abstract_inverted_index.(WSRNs) | 5 |
| abstract_inverted_index.adapted | 196 |
| abstract_inverted_index.complex | 9, 36, 88, 140, 163, 201 |
| abstract_inverted_index.entropy | 83 |
| abstract_inverted_index.greatly | 167 |
| abstract_inverted_index.maximum | 82 |
| abstract_inverted_index.network | 102, 112 |
| abstract_inverted_index.optimal | 156 |
| abstract_inverted_index.problem | 91, 122 |
| abstract_inverted_index.provide | 154 |
| abstract_inverted_index.reduces | 168 |
| abstract_inverted_index.sensors | 33 |
| abstract_inverted_index.subject | 15 |
| abstract_inverted_index.variety | 161, 199 |
| abstract_inverted_index.various | 35 |
| abstract_inverted_index.Finally, | 180 |
| abstract_inverted_index.Wireless | 0 |
| abstract_inverted_index.adapting | 175 |
| abstract_inverted_index.involved | 173 |
| abstract_inverted_index.methods, | 148 |
| abstract_inverted_index.methods. | 113 |
| abstract_inverted_index.networks | 4 |
| abstract_inverted_index.proposed | 78, 108 |
| abstract_inverted_index.solution | 158 |
| abstract_inverted_index.algorithm | 44, 106, 118, 151 |
| abstract_inverted_index.dangerous | 11, 142 |
| abstract_inverted_index.different | 30, 60, 177 |
| abstract_inverted_index.difficult | 126 |
| abstract_inverted_index.function, | 84 |
| abstract_inverted_index.necessary | 27 |
| abstract_inverted_index.obtaining | 20 |
| abstract_inverted_index.scenario, | 54 |
| abstract_inverted_index.scenarios | 64 |
| abstract_inverted_index.adaptively | 153 |
| abstract_inverted_index.algorithm, | 192 |
| abstract_inverted_index.applicable | 47 |
| abstract_inverted_index.deployment | 43, 75, 90, 105, 117, 147, 157 |
| abstract_inverted_index.monitoring | 23, 53, 63, 143, 164, 178 |
| abstract_inverted_index.scenarios. | 203 |
| abstract_inverted_index.transforms | 86 |
| abstract_inverted_index.application | 202 |
| abstract_inverted_index.effectively | 57, 119 |
| abstract_inverted_index.experiments | 185 |
| abstract_inverted_index.information | 137 |
| abstract_inverted_index.performance | 188 |
| abstract_inverted_index.traditional | 41, 146 |
| abstract_inverted_index.constraints. | 18, 39 |
| abstract_inverted_index.continuously | 94 |
| abstract_inverted_index.environment. | 144 |
| abstract_inverted_index.environments | 12, 37 |
| abstract_inverted_index.event-driven | 42, 74, 89, 104, 116 |
| abstract_inverted_index.performance, | 24 |
| abstract_inverted_index.collaborative | 100 |
| abstract_inverted_index.environmental | 136 |
| abstract_inverted_index.environments. | 165, 179 |
| abstract_inverted_index.sub-problems. | 97 |
| abstract_inverted_index.differentiable | 95 |
| abstract_inverted_index.single-objective | 96 |
| abstract_inverted_index.multi-constrained | 73 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5090121806 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I9224756 |
| citation_normalized_percentile.value | 0.70707286 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |