Collaborative Retrieval for Large Language Model-based Conversational Recommender Systems Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.14137
Conversational recommender systems (CRS) aim to provide personalized recommendations via interactive dialogues with users. While large language models (LLMs) enhance CRS with their superior understanding of context-aware user preferences, they typically struggle to leverage behavioral data, which have proven to be important for classical collaborative filtering (CF)-based approaches. For this reason, we propose CRAG, Collaborative Retrieval Augmented Generation for LLM-based CRS. To the best of our knowledge, CRAG is the first approach that combines state-of-the-art LLMs with CF for conversational recommendations. Our experiments on two publicly available movie conversational recommendation datasets, i.e., a refined Reddit dataset (which we name Reddit-v2) as well as the Redial dataset, demonstrate the superior item coverage and recommendation performance of CRAG, compared to several CRS baselines. Moreover, we observe that the improvements are mainly due to better recommendation accuracy on recently released movies. The code and data are available at https://github.com/yaochenzhu/CRAG.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.14137
- https://arxiv.org/pdf/2502.14137
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407806379
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407806379Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.14137Digital Object Identifier
- Title
-
Collaborative Retrieval for Large Language Model-based Conversational Recommender SystemsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-19Full publication date if available
- Authors
-
Yaochen Zhu, Chao Wan, Harald Steck, Dawen Liang, Yesu Feng, Nathan Kallus, Jundong LiList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.14137Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.14137Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.14137Direct OA link when available
- Concepts
-
Recommender system, Computer science, Information retrieval, Natural language processing, World Wide Web, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407806379 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.14137 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.14137 |
| ids.openalex | https://openalex.org/W4407806379 |
| fwci | |
| type | preprint |
| title | Collaborative Retrieval for Large Language Model-based Conversational Recommender Systems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9897000193595886 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10203 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9787999987602234 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Recommender Systems and Techniques |
| topics[2].id | https://openalex.org/T13083 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9171000123023987 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Text Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C557471498 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8011904358863831 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q554950 |
| concepts[0].display_name | Recommender system |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7459165453910828 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C23123220 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5075796842575073 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[2].display_name | Information retrieval |
| concepts[3].id | https://openalex.org/C204321447 |
| concepts[3].level | 1 |
| concepts[3].score | 0.500985860824585 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[3].display_name | Natural language processing |
| concepts[4].id | https://openalex.org/C136764020 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3742697238922119 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[4].display_name | World Wide Web |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.36100104451179504 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/recommender-system |
| keywords[0].score | 0.8011904358863831 |
| keywords[0].display_name | Recommender system |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7459165453910828 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/information-retrieval |
| keywords[2].score | 0.5075796842575073 |
| keywords[2].display_name | Information retrieval |
| keywords[3].id | https://openalex.org/keywords/natural-language-processing |
| keywords[3].score | 0.500985860824585 |
| keywords[3].display_name | Natural language processing |
| keywords[4].id | https://openalex.org/keywords/world-wide-web |
| keywords[4].score | 0.3742697238922119 |
| keywords[4].display_name | World Wide Web |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.36100104451179504 |
| keywords[5].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.14137 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.14137 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.14137 |
| locations[1].id | doi:10.48550/arxiv.2502.14137 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.14137 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5102911934 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6266-2788 |
| authorships[0].author.display_name | Yaochen Zhu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhu, Yaochen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5106482730 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6780-2006 |
| authorships[1].author.display_name | Chao Wan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wan, Chao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5070327072 |
| authorships[2].author.orcid | https://orcid.org/0009-0007-7448-8335 |
| authorships[2].author.display_name | Harald Steck |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Steck, Harald |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5079882875 |
| authorships[3].author.orcid | https://orcid.org/0009-0002-9701-6473 |
| authorships[3].author.display_name | Dawen Liang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liang, Dawen |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5102946244 |
| authorships[4].author.orcid | https://orcid.org/0009-0008-4459-883X |
| authorships[4].author.display_name | Yesu Feng |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Feng, Yesu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5036921114 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1672-0507 |
| authorships[5].author.display_name | Nathan Kallus |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Kallus, Nathan |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5029588473 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1878-817X |
| authorships[6].author.display_name | Jundong Li |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Li, Jundong |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.14137 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Collaborative Retrieval for Large Language Model-based Conversational Recommender Systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9897000193595886 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W4390273403, https://openalex.org/W4386781444, https://openalex.org/W2150182025, https://openalex.org/W3092950680, https://openalex.org/W3197542405, https://openalex.org/W2056712470, https://openalex.org/W3125580266, https://openalex.org/W4288390103, https://openalex.org/W3204019825 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.14137 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.14137 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.14137 |
| primary_location.id | pmh:oai:arXiv.org:2502.14137 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.14137 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.14137 |
| publication_date | 2025-02-19 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 92 |
| abstract_inverted_index.CF | 77 |
| abstract_inverted_index.To | 61 |
| abstract_inverted_index.as | 100, 102 |
| abstract_inverted_index.at | 144 |
| abstract_inverted_index.be | 40 |
| abstract_inverted_index.is | 68 |
| abstract_inverted_index.of | 25, 64, 114 |
| abstract_inverted_index.on | 83, 134 |
| abstract_inverted_index.to | 5, 32, 39, 117, 130 |
| abstract_inverted_index.we | 51, 97, 122 |
| abstract_inverted_index.CRS | 20, 119 |
| abstract_inverted_index.For | 48 |
| abstract_inverted_index.Our | 81 |
| abstract_inverted_index.The | 138 |
| abstract_inverted_index.aim | 4 |
| abstract_inverted_index.and | 111, 140 |
| abstract_inverted_index.are | 127, 142 |
| abstract_inverted_index.due | 129 |
| abstract_inverted_index.for | 42, 58, 78 |
| abstract_inverted_index.our | 65 |
| abstract_inverted_index.the | 62, 69, 103, 107, 125 |
| abstract_inverted_index.two | 84 |
| abstract_inverted_index.via | 9 |
| abstract_inverted_index.CRAG | 67 |
| abstract_inverted_index.CRS. | 60 |
| abstract_inverted_index.LLMs | 75 |
| abstract_inverted_index.best | 63 |
| abstract_inverted_index.code | 139 |
| abstract_inverted_index.data | 141 |
| abstract_inverted_index.have | 37 |
| abstract_inverted_index.item | 109 |
| abstract_inverted_index.name | 98 |
| abstract_inverted_index.that | 72, 124 |
| abstract_inverted_index.they | 29 |
| abstract_inverted_index.this | 49 |
| abstract_inverted_index.user | 27 |
| abstract_inverted_index.well | 101 |
| abstract_inverted_index.with | 12, 21, 76 |
| abstract_inverted_index.(CRS) | 3 |
| abstract_inverted_index.CRAG, | 53, 115 |
| abstract_inverted_index.While | 14 |
| abstract_inverted_index.data, | 35 |
| abstract_inverted_index.first | 70 |
| abstract_inverted_index.i.e., | 91 |
| abstract_inverted_index.large | 15 |
| abstract_inverted_index.movie | 87 |
| abstract_inverted_index.their | 22 |
| abstract_inverted_index.which | 36 |
| abstract_inverted_index.(LLMs) | 18 |
| abstract_inverted_index.(which | 96 |
| abstract_inverted_index.Reddit | 94 |
| abstract_inverted_index.Redial | 104 |
| abstract_inverted_index.better | 131 |
| abstract_inverted_index.mainly | 128 |
| abstract_inverted_index.models | 17 |
| abstract_inverted_index.proven | 38 |
| abstract_inverted_index.users. | 13 |
| abstract_inverted_index.dataset | 95 |
| abstract_inverted_index.enhance | 19 |
| abstract_inverted_index.movies. | 137 |
| abstract_inverted_index.observe | 123 |
| abstract_inverted_index.propose | 52 |
| abstract_inverted_index.provide | 6 |
| abstract_inverted_index.reason, | 50 |
| abstract_inverted_index.refined | 93 |
| abstract_inverted_index.several | 118 |
| abstract_inverted_index.systems | 2 |
| abstract_inverted_index.accuracy | 133 |
| abstract_inverted_index.approach | 71 |
| abstract_inverted_index.combines | 73 |
| abstract_inverted_index.compared | 116 |
| abstract_inverted_index.coverage | 110 |
| abstract_inverted_index.dataset, | 105 |
| abstract_inverted_index.language | 16 |
| abstract_inverted_index.leverage | 33 |
| abstract_inverted_index.publicly | 85 |
| abstract_inverted_index.recently | 135 |
| abstract_inverted_index.released | 136 |
| abstract_inverted_index.struggle | 31 |
| abstract_inverted_index.superior | 23, 108 |
| abstract_inverted_index.Augmented | 56 |
| abstract_inverted_index.LLM-based | 59 |
| abstract_inverted_index.Moreover, | 121 |
| abstract_inverted_index.Retrieval | 55 |
| abstract_inverted_index.available | 86, 143 |
| abstract_inverted_index.classical | 43 |
| abstract_inverted_index.datasets, | 90 |
| abstract_inverted_index.dialogues | 11 |
| abstract_inverted_index.filtering | 45 |
| abstract_inverted_index.important | 41 |
| abstract_inverted_index.typically | 30 |
| abstract_inverted_index.(CF)-based | 46 |
| abstract_inverted_index.Generation | 57 |
| abstract_inverted_index.Reddit-v2) | 99 |
| abstract_inverted_index.baselines. | 120 |
| abstract_inverted_index.behavioral | 34 |
| abstract_inverted_index.knowledge, | 66 |
| abstract_inverted_index.approaches. | 47 |
| abstract_inverted_index.demonstrate | 106 |
| abstract_inverted_index.experiments | 82 |
| abstract_inverted_index.interactive | 10 |
| abstract_inverted_index.performance | 113 |
| abstract_inverted_index.recommender | 1 |
| abstract_inverted_index.improvements | 126 |
| abstract_inverted_index.personalized | 7 |
| abstract_inverted_index.preferences, | 28 |
| abstract_inverted_index.Collaborative | 54 |
| abstract_inverted_index.collaborative | 44 |
| abstract_inverted_index.context-aware | 26 |
| abstract_inverted_index.understanding | 24 |
| abstract_inverted_index.Conversational | 0 |
| abstract_inverted_index.conversational | 79, 88 |
| abstract_inverted_index.recommendation | 89, 112, 132 |
| abstract_inverted_index.recommendations | 8 |
| abstract_inverted_index.recommendations. | 80 |
| abstract_inverted_index.state-of-the-art | 74 |
| abstract_inverted_index.https://github.com/yaochenzhu/CRAG. | 145 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |