CoLoRA: Continuous low-rank adaptation for reduced implicit neural modeling of parameterized partial differential equations Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2402.14646
This work introduces reduced models based on Continuous Low Rank Adaptation (CoLoRA) that pre-train neural networks for a given partial differential equation and then continuously adapt low-rank weights in time to rapidly predict the evolution of solution fields at new physics parameters and new initial conditions. The adaptation can be either purely data-driven or via an equation-driven variational approach that provides Galerkin-optimal approximations. Because CoLoRA approximates solution fields locally in time, the rank of the weights can be kept small, which means that only few training trajectories are required offline so that CoLoRA is well suited for data-scarce regimes. Predictions with CoLoRA are orders of magnitude faster than with classical methods and their accuracy and parameter efficiency is higher compared to other neural network approaches.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2402.14646
- https://arxiv.org/pdf/2402.14646
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392121003
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392121003Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2402.14646Digital Object Identifier
- Title
-
CoLoRA: Continuous low-rank adaptation for reduced implicit neural modeling of parameterized partial differential equationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-22Full publication date if available
- Authors
-
Jules J. Berman, Benjamin PeherstorferList of authors in order
- Landing page
-
https://arxiv.org/abs/2402.14646Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2402.14646Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2402.14646Direct OA link when available
- Concepts
-
Parameterized complexity, Adaptation (eye), Rank (graph theory), Partial differential equation, Computer science, Applied mathematics, Artificial neural network, Mathematics, Control theory (sociology), Mathematical analysis, Algorithm, Artificial intelligence, Neuroscience, Psychology, Combinatorics, Control (management)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392121003 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2402.14646 |
| ids.doi | https://doi.org/10.48550/arxiv.2402.14646 |
| ids.openalex | https://openalex.org/W4392121003 |
| fwci | |
| type | preprint |
| title | CoLoRA: Continuous low-rank adaptation for reduced implicit neural modeling of parameterized partial differential equations |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11206 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Model Reduction and Neural Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C165464430 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8565719127655029 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1570441 |
| concepts[0].display_name | Parameterized complexity |
| concepts[1].id | https://openalex.org/C139807058 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7131462693214417 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q352374 |
| concepts[1].display_name | Adaptation (eye) |
| concepts[2].id | https://openalex.org/C164226766 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6492642164230347 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7293202 |
| concepts[2].display_name | Rank (graph theory) |
| concepts[3].id | https://openalex.org/C93779851 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6176738739013672 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q271977 |
| concepts[3].display_name | Partial differential equation |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.43790870904922485 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C28826006 |
| concepts[5].level | 1 |
| concepts[5].score | 0.42897891998291016 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[5].display_name | Applied mathematics |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42732366919517517 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.42162787914276123 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C47446073 |
| concepts[8].level | 3 |
| concepts[8].score | 0.34808528423309326 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5165890 |
| concepts[8].display_name | Control theory (sociology) |
| concepts[9].id | https://openalex.org/C134306372 |
| concepts[9].level | 1 |
| concepts[9].score | 0.23401528596878052 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[9].display_name | Mathematical analysis |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.22694671154022217 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1947016417980194 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C169760540 |
| concepts[12].level | 1 |
| concepts[12].score | 0.10352164506912231 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[12].display_name | Neuroscience |
| concepts[13].id | https://openalex.org/C15744967 |
| concepts[13].level | 0 |
| concepts[13].score | 0.09436583518981934 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[13].display_name | Psychology |
| concepts[14].id | https://openalex.org/C114614502 |
| concepts[14].level | 1 |
| concepts[14].score | 0.06535694003105164 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[14].display_name | Combinatorics |
| concepts[15].id | https://openalex.org/C2775924081 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[15].display_name | Control (management) |
| keywords[0].id | https://openalex.org/keywords/parameterized-complexity |
| keywords[0].score | 0.8565719127655029 |
| keywords[0].display_name | Parameterized complexity |
| keywords[1].id | https://openalex.org/keywords/adaptation |
| keywords[1].score | 0.7131462693214417 |
| keywords[1].display_name | Adaptation (eye) |
| keywords[2].id | https://openalex.org/keywords/rank |
| keywords[2].score | 0.6492642164230347 |
| keywords[2].display_name | Rank (graph theory) |
| keywords[3].id | https://openalex.org/keywords/partial-differential-equation |
| keywords[3].score | 0.6176738739013672 |
| keywords[3].display_name | Partial differential equation |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.43790870904922485 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/applied-mathematics |
| keywords[5].score | 0.42897891998291016 |
| keywords[5].display_name | Applied mathematics |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.42732366919517517 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.42162787914276123 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/control-theory |
| keywords[8].score | 0.34808528423309326 |
| keywords[8].display_name | Control theory (sociology) |
| keywords[9].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[9].score | 0.23401528596878052 |
| keywords[9].display_name | Mathematical analysis |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.22694671154022217 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.1947016417980194 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/neuroscience |
| keywords[12].score | 0.10352164506912231 |
| keywords[12].display_name | Neuroscience |
| keywords[13].id | https://openalex.org/keywords/psychology |
| keywords[13].score | 0.09436583518981934 |
| keywords[13].display_name | Psychology |
| keywords[14].id | https://openalex.org/keywords/combinatorics |
| keywords[14].score | 0.06535694003105164 |
| keywords[14].display_name | Combinatorics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2402.14646 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2402.14646 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2402.14646 |
| locations[1].id | doi:10.48550/arxiv.2402.14646 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2402.14646 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5064983883 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jules J. Berman |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Berman, Jules |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5027402421 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1558-6775 |
| authorships[1].author.display_name | Benjamin Peherstorfer |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Peherstorfer, Benjamin |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2402.14646 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-02-24T00:00:00 |
| display_name | CoLoRA: Continuous low-rank adaptation for reduced implicit neural modeling of parameterized partial differential equations |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11206 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Model Reduction and Neural Networks |
| related_works | https://openalex.org/W2051058708, https://openalex.org/W154868527, https://openalex.org/W1494268238, https://openalex.org/W1983207144, https://openalex.org/W2490706771, https://openalex.org/W2480116122, https://openalex.org/W1976468483, https://openalex.org/W4255576661, https://openalex.org/W1516574938, https://openalex.org/W2563912921 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2402.14646 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2402.14646 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2402.14646 |
| primary_location.id | pmh:oai:arXiv.org:2402.14646 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2402.14646 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2402.14646 |
| publication_date | 2024-02-22 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 17 |
| abstract_inverted_index.an | 55 |
| abstract_inverted_index.at | 38 |
| abstract_inverted_index.be | 49, 77 |
| abstract_inverted_index.in | 28, 69 |
| abstract_inverted_index.is | 93, 117 |
| abstract_inverted_index.of | 35, 73, 104 |
| abstract_inverted_index.on | 6 |
| abstract_inverted_index.or | 53 |
| abstract_inverted_index.so | 90 |
| abstract_inverted_index.to | 30, 120 |
| abstract_inverted_index.Low | 8 |
| abstract_inverted_index.The | 46 |
| abstract_inverted_index.and | 22, 42, 111, 114 |
| abstract_inverted_index.are | 87, 102 |
| abstract_inverted_index.can | 48, 76 |
| abstract_inverted_index.few | 84 |
| abstract_inverted_index.for | 16, 96 |
| abstract_inverted_index.new | 39, 43 |
| abstract_inverted_index.the | 33, 71, 74 |
| abstract_inverted_index.via | 54 |
| abstract_inverted_index.Rank | 9 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.kept | 78 |
| abstract_inverted_index.only | 83 |
| abstract_inverted_index.rank | 72 |
| abstract_inverted_index.than | 107 |
| abstract_inverted_index.that | 12, 59, 82, 91 |
| abstract_inverted_index.then | 23 |
| abstract_inverted_index.time | 29 |
| abstract_inverted_index.well | 94 |
| abstract_inverted_index.with | 100, 108 |
| abstract_inverted_index.work | 1 |
| abstract_inverted_index.adapt | 25 |
| abstract_inverted_index.based | 5 |
| abstract_inverted_index.given | 18 |
| abstract_inverted_index.means | 81 |
| abstract_inverted_index.other | 121 |
| abstract_inverted_index.their | 112 |
| abstract_inverted_index.time, | 70 |
| abstract_inverted_index.which | 80 |
| abstract_inverted_index.CoLoRA | 64, 92, 101 |
| abstract_inverted_index.either | 50 |
| abstract_inverted_index.faster | 106 |
| abstract_inverted_index.fields | 37, 67 |
| abstract_inverted_index.higher | 118 |
| abstract_inverted_index.models | 4 |
| abstract_inverted_index.neural | 14, 122 |
| abstract_inverted_index.orders | 103 |
| abstract_inverted_index.purely | 51 |
| abstract_inverted_index.small, | 79 |
| abstract_inverted_index.suited | 95 |
| abstract_inverted_index.Because | 63 |
| abstract_inverted_index.initial | 44 |
| abstract_inverted_index.locally | 68 |
| abstract_inverted_index.methods | 110 |
| abstract_inverted_index.network | 123 |
| abstract_inverted_index.offline | 89 |
| abstract_inverted_index.partial | 19 |
| abstract_inverted_index.physics | 40 |
| abstract_inverted_index.predict | 32 |
| abstract_inverted_index.rapidly | 31 |
| abstract_inverted_index.reduced | 3 |
| abstract_inverted_index.weights | 27, 75 |
| abstract_inverted_index.(CoLoRA) | 11 |
| abstract_inverted_index.accuracy | 113 |
| abstract_inverted_index.approach | 58 |
| abstract_inverted_index.compared | 119 |
| abstract_inverted_index.equation | 21 |
| abstract_inverted_index.low-rank | 26 |
| abstract_inverted_index.networks | 15 |
| abstract_inverted_index.provides | 60 |
| abstract_inverted_index.regimes. | 98 |
| abstract_inverted_index.required | 88 |
| abstract_inverted_index.solution | 36, 66 |
| abstract_inverted_index.training | 85 |
| abstract_inverted_index.classical | 109 |
| abstract_inverted_index.evolution | 34 |
| abstract_inverted_index.magnitude | 105 |
| abstract_inverted_index.parameter | 115 |
| abstract_inverted_index.pre-train | 13 |
| abstract_inverted_index.Adaptation | 10 |
| abstract_inverted_index.Continuous | 7 |
| abstract_inverted_index.adaptation | 47 |
| abstract_inverted_index.efficiency | 116 |
| abstract_inverted_index.introduces | 2 |
| abstract_inverted_index.parameters | 41 |
| abstract_inverted_index.Predictions | 99 |
| abstract_inverted_index.approaches. | 124 |
| abstract_inverted_index.conditions. | 45 |
| abstract_inverted_index.data-driven | 52 |
| abstract_inverted_index.data-scarce | 97 |
| abstract_inverted_index.variational | 57 |
| abstract_inverted_index.approximates | 65 |
| abstract_inverted_index.continuously | 24 |
| abstract_inverted_index.differential | 20 |
| abstract_inverted_index.trajectories | 86 |
| abstract_inverted_index.approximations. | 62 |
| abstract_inverted_index.equation-driven | 56 |
| abstract_inverted_index.Galerkin-optimal | 61 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |