Combinatorial analysis of line graphs: domination, chromaticity, and Hamiltoniancity Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3934/math.2025599
Line graphs are a fundamental class of graphs extensively studied for their structural properties and applications in diverse fields such as network design, optimization, and algorithm development. Pan and lollipop graphs, with their distinctive hybrid structures, offer a fertile ground for exploring combinatorial properties in their line graphs. Motivated by the need to better understand domination, chromaticity, and Hamiltonian properties in line graphs, this study examined the line graphs of pan and lollipop graphs. These investigations were inspired by their potential applications in connectivity analysis and optimization in networks. We derived analytical formulas for the domination and chromatic numbers of these line graphs, established relationships between these parameters and their corresponding original graphs, and proved that the line graph of a pan graph is Hamiltonian while that of a lollipop graph is traceable. The methodology combines established theoretical results and inequalities, including domination bounds and chromaticity relations, with rigorous combinatorial analysis. Our results not only contribute to the theoretical understanding of line graphs but also have implications for practical problems in network optimization and graph algorithm design, opening avenues for further research into hybrid graph structures.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3934/math.2025599
- OA Status
- gold
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411166082
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411166082Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3934/math.2025599Digital Object Identifier
- Title
-
Combinatorial analysis of line graphs: domination, chromaticity, and HamiltoniancityWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Yubin Zhong, Sakander Hayat, Suliman Khan, Vito Napolitano, Mohammed J. F. AlenaziList of authors in order
- Landing page
-
https://doi.org/10.3934/math.2025599Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3934/math.2025599Direct OA link when available
- Concepts
-
Chromaticity, Line (geometry), Combinatorics, Computer science, Mathematics, Artificial intelligence, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411166082 |
|---|---|
| doi | https://doi.org/10.3934/math.2025599 |
| ids.doi | https://doi.org/10.3934/math.2025599 |
| ids.openalex | https://openalex.org/W4411166082 |
| fwci | 0.0 |
| type | article |
| title | Combinatorial analysis of line graphs: domination, chromaticity, and Hamiltoniancity |
| biblio.issue | 6 |
| biblio.volume | 10 |
| biblio.last_page | 13364 |
| biblio.first_page | 13343 |
| topics[0].id | https://openalex.org/T10374 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Advanced Graph Theory Research |
| topics[1].id | https://openalex.org/T12541 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.998199999332428 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Graph Labeling and Dimension Problems |
| topics[2].id | https://openalex.org/T11476 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9872000217437744 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2608 |
| topics[2].subfield.display_name | Geometry and Topology |
| topics[2].display_name | Graph theory and applications |
| is_xpac | False |
| apc_list.value | 1200 |
| apc_list.currency | USD |
| apc_list.value_usd | 1200 |
| apc_paid.value | 1200 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1200 |
| concepts[0].id | https://openalex.org/C201780734 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9133908152580261 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5069880 |
| concepts[0].display_name | Chromaticity |
| concepts[1].id | https://openalex.org/C198352243 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5441488027572632 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q37105 |
| concepts[1].display_name | Line (geometry) |
| concepts[2].id | https://openalex.org/C114614502 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4656440019607544 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[2].display_name | Combinatorics |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.43179383873939514 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.35412150621414185 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.23386934399604797 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C2524010 |
| concepts[6].level | 1 |
| concepts[6].score | 0.08222568035125732 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[6].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/chromaticity |
| keywords[0].score | 0.9133908152580261 |
| keywords[0].display_name | Chromaticity |
| keywords[1].id | https://openalex.org/keywords/line |
| keywords[1].score | 0.5441488027572632 |
| keywords[1].display_name | Line (geometry) |
| keywords[2].id | https://openalex.org/keywords/combinatorics |
| keywords[2].score | 0.4656440019607544 |
| keywords[2].display_name | Combinatorics |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.43179383873939514 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.35412150621414185 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.23386934399604797 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/geometry |
| keywords[6].score | 0.08222568035125732 |
| keywords[6].display_name | Geometry |
| language | en |
| locations[0].id | doi:10.3934/math.2025599 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210179087 |
| locations[0].source.issn | 2473-6988 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2473-6988 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | AIMS Mathematics |
| locations[0].source.host_organization | https://openalex.org/P4310315844 |
| locations[0].source.host_organization_name | American Institute of Mathematical Sciences |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315844 |
| locations[0].source.host_organization_lineage_names | American Institute of Mathematical Sciences |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | AIMS Mathematics |
| locations[0].landing_page_url | https://doi.org/10.3934/math.2025599 |
| locations[1].id | pmh:oai:doaj.org/article:0ac30e2747a944dba31102f829dddf27 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | AIMS Mathematics, Vol 10, Iss 6, Pp 13343-13364 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/0ac30e2747a944dba31102f829dddf27 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5102000812 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0473-0372 |
| authorships[0].author.display_name | Yubin Zhong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yubin Zhong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5086932385 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5100-6259 |
| authorships[1].author.display_name | Sakander Hayat |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sakander Hayat |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5055337276 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3566-9145 |
| authorships[2].author.display_name | Suliman Khan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Suliman Khan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5051479242 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2504-6967 |
| authorships[3].author.display_name | Vito Napolitano |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Vito Napolitano |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5075968009 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6593-112X |
| authorships[4].author.display_name | Mohammed J. F. Alenazi |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Mohammed J. F. Alenazi |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3934/math.2025599 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Combinatorial analysis of line graphs: domination, chromaticity, and Hamiltoniancity |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10374 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Advanced Graph Theory Research |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4391375266, https://openalex.org/W3042617802, https://openalex.org/W2390565750, https://openalex.org/W4304143159, https://openalex.org/W2612049511, https://openalex.org/W2088117556, https://openalex.org/W2155863125, https://openalex.org/W1179954120 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3934/math.2025599 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210179087 |
| best_oa_location.source.issn | 2473-6988 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2473-6988 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | AIMS Mathematics |
| best_oa_location.source.host_organization | https://openalex.org/P4310315844 |
| best_oa_location.source.host_organization_name | American Institute of Mathematical Sciences |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315844 |
| best_oa_location.source.host_organization_lineage_names | American Institute of Mathematical Sciences |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | AIMS Mathematics |
| best_oa_location.landing_page_url | https://doi.org/10.3934/math.2025599 |
| primary_location.id | doi:10.3934/math.2025599 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210179087 |
| primary_location.source.issn | 2473-6988 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2473-6988 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | AIMS Mathematics |
| primary_location.source.host_organization | https://openalex.org/P4310315844 |
| primary_location.source.host_organization_name | American Institute of Mathematical Sciences |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315844 |
| primary_location.source.host_organization_lineage_names | American Institute of Mathematical Sciences |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | AIMS Mathematics |
| primary_location.landing_page_url | https://doi.org/10.3934/math.2025599 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3110267038, https://openalex.org/W2041298209, https://openalex.org/W2074038919, https://openalex.org/W4288752618, https://openalex.org/W2167519573, https://openalex.org/W4249459342, https://openalex.org/W4206632990, https://openalex.org/W2003370404, https://openalex.org/W3124819471, https://openalex.org/W2005906639, https://openalex.org/W2735122752, https://openalex.org/W1816428715, https://openalex.org/W3128481771, https://openalex.org/W4226172832, https://openalex.org/W3199698207, https://openalex.org/W2584743269, https://openalex.org/W4245220234, https://openalex.org/W4247549312, https://openalex.org/W2047073094, https://openalex.org/W2549969736, https://openalex.org/W4400681763, https://openalex.org/W2087792652, https://openalex.org/W3166890756, https://openalex.org/W3108383389 |
| referenced_works_count | 24 |
| abstract_inverted_index.a | 3, 37, 120, 128 |
| abstract_inverted_index.We | 89 |
| abstract_inverted_index.as | 20 |
| abstract_inverted_index.by | 49, 78 |
| abstract_inverted_index.in | 16, 44, 60, 82, 87, 170 |
| abstract_inverted_index.is | 123, 131 |
| abstract_inverted_index.of | 6, 69, 99, 119, 127, 160 |
| abstract_inverted_index.to | 52, 156 |
| abstract_inverted_index.Our | 151 |
| abstract_inverted_index.Pan | 27 |
| abstract_inverted_index.The | 133 |
| abstract_inverted_index.and | 14, 24, 28, 57, 71, 85, 96, 108, 113, 139, 144, 173 |
| abstract_inverted_index.are | 2 |
| abstract_inverted_index.but | 163 |
| abstract_inverted_index.for | 10, 40, 93, 167, 179 |
| abstract_inverted_index.not | 153 |
| abstract_inverted_index.pan | 70, 121 |
| abstract_inverted_index.the | 50, 66, 94, 116, 157 |
| abstract_inverted_index.Line | 0 |
| abstract_inverted_index.also | 164 |
| abstract_inverted_index.have | 165 |
| abstract_inverted_index.into | 182 |
| abstract_inverted_index.line | 46, 61, 67, 101, 117, 161 |
| abstract_inverted_index.need | 51 |
| abstract_inverted_index.only | 154 |
| abstract_inverted_index.such | 19 |
| abstract_inverted_index.that | 115, 126 |
| abstract_inverted_index.this | 63 |
| abstract_inverted_index.were | 76 |
| abstract_inverted_index.with | 31, 147 |
| abstract_inverted_index.These | 74 |
| abstract_inverted_index.class | 5 |
| abstract_inverted_index.graph | 118, 122, 130, 174, 184 |
| abstract_inverted_index.offer | 36 |
| abstract_inverted_index.study | 64 |
| abstract_inverted_index.their | 11, 32, 45, 79, 109 |
| abstract_inverted_index.these | 100, 106 |
| abstract_inverted_index.while | 125 |
| abstract_inverted_index.better | 53 |
| abstract_inverted_index.bounds | 143 |
| abstract_inverted_index.fields | 18 |
| abstract_inverted_index.graphs | 1, 7, 68, 162 |
| abstract_inverted_index.ground | 39 |
| abstract_inverted_index.hybrid | 34, 183 |
| abstract_inverted_index.proved | 114 |
| abstract_inverted_index.avenues | 178 |
| abstract_inverted_index.between | 105 |
| abstract_inverted_index.derived | 90 |
| abstract_inverted_index.design, | 22, 176 |
| abstract_inverted_index.diverse | 17 |
| abstract_inverted_index.fertile | 38 |
| abstract_inverted_index.further | 180 |
| abstract_inverted_index.graphs, | 30, 62, 102, 112 |
| abstract_inverted_index.graphs. | 47, 73 |
| abstract_inverted_index.network | 21, 171 |
| abstract_inverted_index.numbers | 98 |
| abstract_inverted_index.opening | 177 |
| abstract_inverted_index.results | 138, 152 |
| abstract_inverted_index.studied | 9 |
| abstract_inverted_index.analysis | 84 |
| abstract_inverted_index.combines | 135 |
| abstract_inverted_index.examined | 65 |
| abstract_inverted_index.formulas | 92 |
| abstract_inverted_index.inspired | 77 |
| abstract_inverted_index.lollipop | 29, 72, 129 |
| abstract_inverted_index.original | 111 |
| abstract_inverted_index.problems | 169 |
| abstract_inverted_index.research | 181 |
| abstract_inverted_index.rigorous | 148 |
| abstract_inverted_index.Motivated | 48 |
| abstract_inverted_index.algorithm | 25, 175 |
| abstract_inverted_index.analysis. | 150 |
| abstract_inverted_index.chromatic | 97 |
| abstract_inverted_index.exploring | 41 |
| abstract_inverted_index.including | 141 |
| abstract_inverted_index.networks. | 88 |
| abstract_inverted_index.potential | 80 |
| abstract_inverted_index.practical | 168 |
| abstract_inverted_index.analytical | 91 |
| abstract_inverted_index.contribute | 155 |
| abstract_inverted_index.domination | 95, 142 |
| abstract_inverted_index.parameters | 107 |
| abstract_inverted_index.properties | 13, 43, 59 |
| abstract_inverted_index.relations, | 146 |
| abstract_inverted_index.structural | 12 |
| abstract_inverted_index.traceable. | 132 |
| abstract_inverted_index.understand | 54 |
| abstract_inverted_index.Hamiltonian | 58, 124 |
| abstract_inverted_index.distinctive | 33 |
| abstract_inverted_index.domination, | 55 |
| abstract_inverted_index.established | 103, 136 |
| abstract_inverted_index.extensively | 8 |
| abstract_inverted_index.fundamental | 4 |
| abstract_inverted_index.methodology | 134 |
| abstract_inverted_index.structures, | 35 |
| abstract_inverted_index.structures. | 185 |
| abstract_inverted_index.theoretical | 137, 158 |
| abstract_inverted_index.applications | 15, 81 |
| abstract_inverted_index.chromaticity | 145 |
| abstract_inverted_index.connectivity | 83 |
| abstract_inverted_index.development. | 26 |
| abstract_inverted_index.implications | 166 |
| abstract_inverted_index.optimization | 86, 172 |
| abstract_inverted_index.chromaticity, | 56 |
| abstract_inverted_index.combinatorial | 42, 149 |
| abstract_inverted_index.corresponding | 110 |
| abstract_inverted_index.inequalities, | 140 |
| abstract_inverted_index.optimization, | 23 |
| abstract_inverted_index.relationships | 104 |
| abstract_inverted_index.understanding | 159 |
| abstract_inverted_index.investigations | 75 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.2248856 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |