Combined track finding with GNN & CKF Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2401.16016
The application of Graph Neural Networks (GNN) in track reconstruction is a promising approach to cope with the challenges arising at the High-Luminosity upgrade of the Large Hadron Collider (HL-LHC). GNNs show good track-finding performance in high-multiplicity scenarios and are naturally parallelizable on heterogeneous compute architectures. Typical high-energy-physics detectors have high resolution in the innermost layers to support vertex reconstruction but lower resolution in the outer parts. GNNs mainly rely on 3D space-point information, which can cause reduced track-finding performance in the outer regions. In this contribution, we present a novel combination of GNN-based track finding with the classical Combinatorial Kalman Filter (CKF) algorithm to circumvent this issue: The GNN resolves the track candidates in the inner pixel region, where 3D space points can represent measurements very well. These candidates are then picked up by the CKF in the outer regions, where the CKF performs well even for 1D measurements. Using the ACTS infrastructure, we present a proof of concept based on truth tracking in the pixels as well as a dedicated GNN pipeline trained on $t\bar{t}$ events with pile-up 200 in the OpenDataDetector.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2401.16016
- https://arxiv.org/pdf/2401.16016
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391376681
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391376681Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2401.16016Digital Object Identifier
- Title
-
Combined track finding with GNN & CKFWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-29Full publication date if available
- Authors
-
L. Heinrich, Benjamin Huth, A. Salzburger, Tilo WettigList of authors in order
- Landing page
-
https://arxiv.org/abs/2401.16016Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2401.16016Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2401.16016Direct OA link when available
- Concepts
-
Track (disk drive), Computer science, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391376681 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2401.16016 |
| ids.doi | https://doi.org/10.48550/arxiv.2401.16016 |
| ids.openalex | https://openalex.org/W4391376681 |
| fwci | |
| type | preprint |
| title | Combined track finding with GNN & CKF |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13717 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9086999893188477 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Advanced Algorithms and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C89992363 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6392350196838379 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5961558 |
| concepts[0].display_name | Track (disk drive) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4178144335746765 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C111919701 |
| concepts[2].level | 1 |
| concepts[2].score | 0.0 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[2].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/track |
| keywords[0].score | 0.6392350196838379 |
| keywords[0].display_name | Track (disk drive) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4178144335746765 |
| keywords[1].display_name | Computer science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2401.16016 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2401.16016 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2401.16016 |
| locations[1].id | doi:10.48550/arxiv.2401.16016 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2401.16016 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5029296854 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4048-7584 |
| authorships[0].author.display_name | L. Heinrich |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Heinrich, Lukas |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5000069383 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Benjamin Huth |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Huth, Benjamin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5051264002 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6004-3510 |
| authorships[2].author.display_name | A. Salzburger |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Salzburger, Andreas |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5017848833 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6732-9204 |
| authorships[3].author.display_name | Tilo Wettig |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Wettig, Tilo |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2401.16016 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-01-31T00:00:00 |
| display_name | Combined track finding with GNN & CKF |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13717 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9086999893188477 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Advanced Algorithms and Applications |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2789518417, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2566545183, https://openalex.org/W2499449816, https://openalex.org/W2059085722 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2401.16016 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2401.16016 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2401.16016 |
| primary_location.id | pmh:oai:arXiv.org:2401.16016 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2401.16016 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2401.16016 |
| publication_date | 2024-01-29 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 11, 89, 156, 170 |
| abstract_inverted_index.1D | 148 |
| abstract_inverted_index.3D | 71, 120 |
| abstract_inverted_index.In | 84 |
| abstract_inverted_index.as | 167, 169 |
| abstract_inverted_index.at | 20 |
| abstract_inverted_index.by | 134 |
| abstract_inverted_index.in | 7, 35, 52, 63, 80, 114, 137, 164, 181 |
| abstract_inverted_index.is | 10 |
| abstract_inverted_index.of | 2, 24, 92, 158 |
| abstract_inverted_index.on | 42, 70, 161, 175 |
| abstract_inverted_index.to | 14, 56, 104 |
| abstract_inverted_index.up | 133 |
| abstract_inverted_index.we | 87, 154 |
| abstract_inverted_index.200 | 180 |
| abstract_inverted_index.CKF | 136, 143 |
| abstract_inverted_index.GNN | 109, 172 |
| abstract_inverted_index.The | 0, 108 |
| abstract_inverted_index.and | 38 |
| abstract_inverted_index.are | 39, 130 |
| abstract_inverted_index.but | 60 |
| abstract_inverted_index.can | 75, 123 |
| abstract_inverted_index.for | 147 |
| abstract_inverted_index.the | 17, 21, 25, 53, 64, 81, 97, 111, 115, 135, 138, 142, 151, 165, 182 |
| abstract_inverted_index.ACTS | 152 |
| abstract_inverted_index.GNNs | 30, 67 |
| abstract_inverted_index.cope | 15 |
| abstract_inverted_index.even | 146 |
| abstract_inverted_index.good | 32 |
| abstract_inverted_index.have | 49 |
| abstract_inverted_index.high | 50 |
| abstract_inverted_index.rely | 69 |
| abstract_inverted_index.show | 31 |
| abstract_inverted_index.then | 131 |
| abstract_inverted_index.this | 85, 106 |
| abstract_inverted_index.very | 126 |
| abstract_inverted_index.well | 145, 168 |
| abstract_inverted_index.with | 16, 96, 178 |
| abstract_inverted_index.(CKF) | 102 |
| abstract_inverted_index.(GNN) | 6 |
| abstract_inverted_index.Graph | 3 |
| abstract_inverted_index.Large | 26 |
| abstract_inverted_index.These | 128 |
| abstract_inverted_index.Using | 150 |
| abstract_inverted_index.based | 160 |
| abstract_inverted_index.cause | 76 |
| abstract_inverted_index.inner | 116 |
| abstract_inverted_index.lower | 61 |
| abstract_inverted_index.novel | 90 |
| abstract_inverted_index.outer | 65, 82, 139 |
| abstract_inverted_index.pixel | 117 |
| abstract_inverted_index.proof | 157 |
| abstract_inverted_index.space | 121 |
| abstract_inverted_index.track | 8, 94, 112 |
| abstract_inverted_index.truth | 162 |
| abstract_inverted_index.well. | 127 |
| abstract_inverted_index.where | 119, 141 |
| abstract_inverted_index.which | 74 |
| abstract_inverted_index.Filter | 101 |
| abstract_inverted_index.Hadron | 27 |
| abstract_inverted_index.Kalman | 100 |
| abstract_inverted_index.Neural | 4 |
| abstract_inverted_index.events | 177 |
| abstract_inverted_index.issue: | 107 |
| abstract_inverted_index.layers | 55 |
| abstract_inverted_index.mainly | 68 |
| abstract_inverted_index.parts. | 66 |
| abstract_inverted_index.picked | 132 |
| abstract_inverted_index.pixels | 166 |
| abstract_inverted_index.points | 122 |
| abstract_inverted_index.vertex | 58 |
| abstract_inverted_index.Typical | 46 |
| abstract_inverted_index.arising | 19 |
| abstract_inverted_index.compute | 44 |
| abstract_inverted_index.concept | 159 |
| abstract_inverted_index.finding | 95 |
| abstract_inverted_index.pile-up | 179 |
| abstract_inverted_index.present | 88, 155 |
| abstract_inverted_index.reduced | 77 |
| abstract_inverted_index.region, | 118 |
| abstract_inverted_index.support | 57 |
| abstract_inverted_index.trained | 174 |
| abstract_inverted_index.upgrade | 23 |
| abstract_inverted_index.Collider | 28 |
| abstract_inverted_index.Networks | 5 |
| abstract_inverted_index.approach | 13 |
| abstract_inverted_index.performs | 144 |
| abstract_inverted_index.pipeline | 173 |
| abstract_inverted_index.regions, | 140 |
| abstract_inverted_index.regions. | 83 |
| abstract_inverted_index.resolves | 110 |
| abstract_inverted_index.tracking | 163 |
| abstract_inverted_index.(HL-LHC). | 29 |
| abstract_inverted_index.GNN-based | 93 |
| abstract_inverted_index.algorithm | 103 |
| abstract_inverted_index.classical | 98 |
| abstract_inverted_index.dedicated | 171 |
| abstract_inverted_index.detectors | 48 |
| abstract_inverted_index.innermost | 54 |
| abstract_inverted_index.naturally | 40 |
| abstract_inverted_index.promising | 12 |
| abstract_inverted_index.represent | 124 |
| abstract_inverted_index.scenarios | 37 |
| abstract_inverted_index.$t\bar{t}$ | 176 |
| abstract_inverted_index.candidates | 113, 129 |
| abstract_inverted_index.challenges | 18 |
| abstract_inverted_index.circumvent | 105 |
| abstract_inverted_index.resolution | 51, 62 |
| abstract_inverted_index.application | 1 |
| abstract_inverted_index.combination | 91 |
| abstract_inverted_index.performance | 34, 79 |
| abstract_inverted_index.space-point | 72 |
| abstract_inverted_index.information, | 73 |
| abstract_inverted_index.measurements | 125 |
| abstract_inverted_index.Combinatorial | 99 |
| abstract_inverted_index.contribution, | 86 |
| abstract_inverted_index.heterogeneous | 43 |
| abstract_inverted_index.measurements. | 149 |
| abstract_inverted_index.track-finding | 33, 78 |
| abstract_inverted_index.architectures. | 45 |
| abstract_inverted_index.parallelizable | 41 |
| abstract_inverted_index.reconstruction | 9, 59 |
| abstract_inverted_index.High-Luminosity | 22 |
| abstract_inverted_index.infrastructure, | 153 |
| abstract_inverted_index.OpenDataDetector. | 183 |
| abstract_inverted_index.high-multiplicity | 36 |
| abstract_inverted_index.high-energy-physics | 47 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |