Combining attention with spectrum to handle missing values on time series data without imputation Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1016/j.ins.2022.07.124
In the development of predictive models, the problem of missing data is a critical issue that traditionally requires a two-step analysis. Data scientists analyze the patterns of missing values, select variables, impute missing values on the basis of domain knowledge, and then train a model. Models typically have their input sizes hardcoded, and have limitations in handling data with high missing rates or changes in available variables. We propose an attention-based neural network combined with a novel real number representation, which requires little work on manually selecting variables, and in which missing data can be overlooked, making imputation unnecessary. In this proposed model, data analysis can be one step, omitting the first step of imputing missing values. The study included data on 32,709 intensive care unit (ICU) admissions and 60 healthcare variables from the Medical Information Mart for Intensive Care (MIMIC)-IV. The proposed algorithm yielded an area under the receiver operating characteristic curve (AUC) of 0.842 (95% CIs: 0.828–0.856) when predicting prolonged length of stay in the ICU, outperforming current approaches using imputation methods. The proposed algorithm can be applied to a range of problems in data science, as it addresses the issue of incomplete data with automatic variable selection.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.ins.2022.07.124
- OA Status
- hybrid
- Cited By
- 16
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4288456949
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4288456949Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.ins.2022.07.124Digital Object Identifier
- Title
-
Combining attention with spectrum to handle missing values on time series data without imputationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-07-28Full publication date if available
- Authors
-
Yen-Pin Chen, Chien‐Hua Huang, Yuan–Hsun Lo, Yiying Chen, Feipei LaiList of authors in order
- Landing page
-
https://doi.org/10.1016/j.ins.2022.07.124Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.ins.2022.07.124Direct OA link when available
- Concepts
-
Missing data, Imputation (statistics), Computer science, Data mining, Receiver operating characteristic, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
16Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 10, 2023: 5Per-year citation counts (last 5 years)
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4288456949 |
|---|---|
| doi | https://doi.org/10.1016/j.ins.2022.07.124 |
| ids.doi | https://doi.org/10.1016/j.ins.2022.07.124 |
| ids.openalex | https://openalex.org/W4288456949 |
| fwci | 3.13278112 |
| type | article |
| title | Combining attention with spectrum to handle missing values on time series data without imputation |
| biblio.issue | |
| biblio.volume | 609 |
| biblio.last_page | 1287 |
| biblio.first_page | 1271 |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| topics[1].id | https://openalex.org/T11396 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9598000049591064 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3605 |
| topics[1].subfield.display_name | Health Information Management |
| topics[1].display_name | Artificial Intelligence in Healthcare |
| topics[2].id | https://openalex.org/T12205 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9099000096321106 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Time Series Analysis and Forecasting |
| is_xpac | False |
| apc_list.value | 3330 |
| apc_list.currency | USD |
| apc_list.value_usd | 3330 |
| apc_paid.value | 3330 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3330 |
| concepts[0].id | https://openalex.org/C9357733 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9241961240768433 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6878417 |
| concepts[0].display_name | Missing data |
| concepts[1].id | https://openalex.org/C58041806 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8215380907058716 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1660484 |
| concepts[1].display_name | Imputation (statistics) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.691536009311676 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C124101348 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5995597839355469 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[3].display_name | Data mining |
| concepts[4].id | https://openalex.org/C58471807 |
| concepts[4].level | 2 |
| concepts[4].score | 0.488574355840683 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q327120 |
| concepts[4].display_name | Receiver operating characteristic |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.31353700160980225 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/missing-data |
| keywords[0].score | 0.9241961240768433 |
| keywords[0].display_name | Missing data |
| keywords[1].id | https://openalex.org/keywords/imputation |
| keywords[1].score | 0.8215380907058716 |
| keywords[1].display_name | Imputation (statistics) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.691536009311676 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/data-mining |
| keywords[3].score | 0.5995597839355469 |
| keywords[3].display_name | Data mining |
| keywords[4].id | https://openalex.org/keywords/receiver-operating-characteristic |
| keywords[4].score | 0.488574355840683 |
| keywords[4].display_name | Receiver operating characteristic |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.31353700160980225 |
| keywords[5].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1016/j.ins.2022.07.124 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S192650101 |
| locations[0].source.issn | 0020-0255, 1872-6291 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0020-0255 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Information Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Information Sciences |
| locations[0].landing_page_url | https://doi.org/10.1016/j.ins.2022.07.124 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5014597737 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2473-0847 |
| authorships[0].author.display_name | Yen-Pin Chen |
| authorships[0].countries | TW |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210131804 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I16733864 |
| authorships[0].affiliations[1].raw_affiliation_string | Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan |
| authorships[0].institutions[0].id | https://openalex.org/I16733864 |
| authorships[0].institutions[0].ror | https://ror.org/05bqach95 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I16733864 |
| authorships[0].institutions[0].country_code | TW |
| authorships[0].institutions[0].display_name | National Taiwan University |
| authorships[0].institutions[1].id | https://openalex.org/I4210131804 |
| authorships[0].institutions[1].ror | https://ror.org/03nteze27 |
| authorships[0].institutions[1].type | healthcare |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210131804 |
| authorships[0].institutions[1].country_code | TW |
| authorships[0].institutions[1].display_name | National Taiwan University Hospital |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yen-Pin Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan |
| authorships[1].author.id | https://openalex.org/A5048487241 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2981-4537 |
| authorships[1].author.display_name | Chien‐Hua Huang |
| authorships[1].countries | TW |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210131804 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan |
| authorships[1].institutions[0].id | https://openalex.org/I4210131804 |
| authorships[1].institutions[0].ror | https://ror.org/03nteze27 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210131804 |
| authorships[1].institutions[0].country_code | TW |
| authorships[1].institutions[0].display_name | National Taiwan University Hospital |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chien-Hua Huang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan |
| authorships[2].author.id | https://openalex.org/A5032951131 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5510-8842 |
| authorships[2].author.display_name | Yuan–Hsun Lo |
| authorships[2].countries | TW |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1309796872 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Applied Mathematics, National Pingtung University, Pingtung, Taiwan |
| authorships[2].institutions[0].id | https://openalex.org/I1309796872 |
| authorships[2].institutions[0].ror | https://ror.org/03z698x91 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I1309796872 |
| authorships[2].institutions[0].country_code | TW |
| authorships[2].institutions[0].display_name | National Pingtung University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yuan-Hsun Lo |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Applied Mathematics, National Pingtung University, Pingtung, Taiwan |
| authorships[3].author.id | https://openalex.org/A5050430249 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8947-2730 |
| authorships[3].author.display_name | Yiying Chen |
| authorships[3].countries | TW |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210131804 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan |
| authorships[3].institutions[0].id | https://openalex.org/I4210131804 |
| authorships[3].institutions[0].ror | https://ror.org/03nteze27 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210131804 |
| authorships[3].institutions[0].country_code | TW |
| authorships[3].institutions[0].display_name | National Taiwan University Hospital |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yi-Ying Chen |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan |
| authorships[4].author.id | https://openalex.org/A5017526842 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7147-8122 |
| authorships[4].author.display_name | Feipei Lai |
| authorships[4].countries | TW |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I16733864 |
| authorships[4].affiliations[0].raw_affiliation_string | Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan |
| authorships[4].institutions[0].id | https://openalex.org/I16733864 |
| authorships[4].institutions[0].ror | https://ror.org/05bqach95 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I16733864 |
| authorships[4].institutions[0].country_code | TW |
| authorships[4].institutions[0].display_name | National Taiwan University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Feipei Lai |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.ins.2022.07.124 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Combining attention with spectrum to handle missing values on time series data without imputation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| related_works | https://openalex.org/W2181530120, https://openalex.org/W4211215373, https://openalex.org/W2024529227, https://openalex.org/W1574575415, https://openalex.org/W3144172081, https://openalex.org/W3179858851, https://openalex.org/W3028371478, https://openalex.org/W2081476516, https://openalex.org/W2581984549, https://openalex.org/W3123177881 |
| cited_by_count | 16 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 10 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.ins.2022.07.124 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S192650101 |
| best_oa_location.source.issn | 0020-0255, 1872-6291 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0020-0255 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Information Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Information Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.ins.2022.07.124 |
| primary_location.id | doi:10.1016/j.ins.2022.07.124 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S192650101 |
| primary_location.source.issn | 0020-0255, 1872-6291 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0020-0255 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Information Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Information Sciences |
| primary_location.landing_page_url | https://doi.org/10.1016/j.ins.2022.07.124 |
| publication_date | 2022-07-28 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3090934961, https://openalex.org/W2932881901, https://openalex.org/W3191689323, https://openalex.org/W3007665943, https://openalex.org/W2791458756, https://openalex.org/W2148659017, https://openalex.org/W2020798301, https://openalex.org/W2467405173, https://openalex.org/W2805089815, https://openalex.org/W3125915762, https://openalex.org/W2967987700, https://openalex.org/W2020764861, https://openalex.org/W2404901863, https://openalex.org/W6941063436, https://openalex.org/W2063294722, https://openalex.org/W2132558113, https://openalex.org/W2146423123, https://openalex.org/W2127662479, https://openalex.org/W2888688603, https://openalex.org/W2795884566, https://openalex.org/W2148742104, https://openalex.org/W6805170044, https://openalex.org/W2964010366, https://openalex.org/W2897852178, https://openalex.org/W1983479840, https://openalex.org/W2321287234, https://openalex.org/W2607507174, https://openalex.org/W3021603874, https://openalex.org/W2550179689, https://openalex.org/W2926585089, https://openalex.org/W2124619447, https://openalex.org/W2192009965, https://openalex.org/W3215883727, https://openalex.org/W4210767179, https://openalex.org/W2083972068, https://openalex.org/W2963341956, https://openalex.org/W2990621876, https://openalex.org/W4293242440, https://openalex.org/W2154986869, https://openalex.org/W2134843796, https://openalex.org/W2788592841, https://openalex.org/W2803403013, https://openalex.org/W2194775991, https://openalex.org/W2958681207, https://openalex.org/W6631190155, https://openalex.org/W3217140273 |
| referenced_works_count | 46 |
| abstract_inverted_index.a | 12, 18, 43, 75, 181 |
| abstract_inverted_index.60 | 129 |
| abstract_inverted_index.In | 0, 99 |
| abstract_inverted_index.We | 67 |
| abstract_inverted_index.an | 69, 145 |
| abstract_inverted_index.as | 188 |
| abstract_inverted_index.be | 94, 106, 178 |
| abstract_inverted_index.in | 55, 64, 89, 165, 185 |
| abstract_inverted_index.is | 11 |
| abstract_inverted_index.it | 189 |
| abstract_inverted_index.of | 3, 8, 26, 37, 113, 154, 163, 183, 193 |
| abstract_inverted_index.on | 34, 84, 121 |
| abstract_inverted_index.or | 62 |
| abstract_inverted_index.to | 180 |
| abstract_inverted_index.The | 117, 141, 174 |
| abstract_inverted_index.and | 40, 52, 88, 128 |
| abstract_inverted_index.can | 93, 105, 177 |
| abstract_inverted_index.for | 137 |
| abstract_inverted_index.one | 107 |
| abstract_inverted_index.the | 1, 6, 24, 35, 110, 133, 148, 166, 191 |
| abstract_inverted_index.(95% | 156 |
| abstract_inverted_index.CIs: | 157 |
| abstract_inverted_index.Care | 139 |
| abstract_inverted_index.Data | 21 |
| abstract_inverted_index.ICU, | 167 |
| abstract_inverted_index.Mart | 136 |
| abstract_inverted_index.area | 146 |
| abstract_inverted_index.care | 124 |
| abstract_inverted_index.data | 10, 57, 92, 103, 120, 186, 195 |
| abstract_inverted_index.from | 132 |
| abstract_inverted_index.have | 47, 53 |
| abstract_inverted_index.high | 59 |
| abstract_inverted_index.real | 77 |
| abstract_inverted_index.stay | 164 |
| abstract_inverted_index.step | 112 |
| abstract_inverted_index.that | 15 |
| abstract_inverted_index.then | 41 |
| abstract_inverted_index.this | 100 |
| abstract_inverted_index.unit | 125 |
| abstract_inverted_index.when | 159 |
| abstract_inverted_index.with | 58, 74, 196 |
| abstract_inverted_index.work | 83 |
| abstract_inverted_index.(AUC) | 153 |
| abstract_inverted_index.(ICU) | 126 |
| abstract_inverted_index.0.842 | 155 |
| abstract_inverted_index.basis | 36 |
| abstract_inverted_index.curve | 152 |
| abstract_inverted_index.first | 111 |
| abstract_inverted_index.input | 49 |
| abstract_inverted_index.issue | 14, 192 |
| abstract_inverted_index.novel | 76 |
| abstract_inverted_index.range | 182 |
| abstract_inverted_index.rates | 61 |
| abstract_inverted_index.sizes | 50 |
| abstract_inverted_index.step, | 108 |
| abstract_inverted_index.study | 118 |
| abstract_inverted_index.their | 48 |
| abstract_inverted_index.train | 42 |
| abstract_inverted_index.under | 147 |
| abstract_inverted_index.using | 171 |
| abstract_inverted_index.which | 80, 90 |
| abstract_inverted_index.32,709 | 122 |
| abstract_inverted_index.Models | 45 |
| abstract_inverted_index.domain | 38 |
| abstract_inverted_index.impute | 31 |
| abstract_inverted_index.length | 162 |
| abstract_inverted_index.little | 82 |
| abstract_inverted_index.making | 96 |
| abstract_inverted_index.model, | 102 |
| abstract_inverted_index.model. | 44 |
| abstract_inverted_index.neural | 71 |
| abstract_inverted_index.number | 78 |
| abstract_inverted_index.select | 29 |
| abstract_inverted_index.values | 33 |
| abstract_inverted_index.Medical | 134 |
| abstract_inverted_index.analyze | 23 |
| abstract_inverted_index.applied | 179 |
| abstract_inverted_index.changes | 63 |
| abstract_inverted_index.current | 169 |
| abstract_inverted_index.missing | 9, 27, 32, 60, 91, 115 |
| abstract_inverted_index.models, | 5 |
| abstract_inverted_index.network | 72 |
| abstract_inverted_index.problem | 7 |
| abstract_inverted_index.propose | 68 |
| abstract_inverted_index.values, | 28 |
| abstract_inverted_index.values. | 116 |
| abstract_inverted_index.yielded | 144 |
| abstract_inverted_index.analysis | 104 |
| abstract_inverted_index.combined | 73 |
| abstract_inverted_index.critical | 13 |
| abstract_inverted_index.handling | 56 |
| abstract_inverted_index.imputing | 114 |
| abstract_inverted_index.included | 119 |
| abstract_inverted_index.manually | 85 |
| abstract_inverted_index.methods. | 173 |
| abstract_inverted_index.omitting | 109 |
| abstract_inverted_index.patterns | 25 |
| abstract_inverted_index.problems | 184 |
| abstract_inverted_index.proposed | 101, 142, 175 |
| abstract_inverted_index.receiver | 149 |
| abstract_inverted_index.requires | 17, 81 |
| abstract_inverted_index.science, | 187 |
| abstract_inverted_index.two-step | 19 |
| abstract_inverted_index.variable | 198 |
| abstract_inverted_index.Intensive | 138 |
| abstract_inverted_index.addresses | 190 |
| abstract_inverted_index.algorithm | 143, 176 |
| abstract_inverted_index.analysis. | 20 |
| abstract_inverted_index.automatic | 197 |
| abstract_inverted_index.available | 65 |
| abstract_inverted_index.intensive | 123 |
| abstract_inverted_index.operating | 150 |
| abstract_inverted_index.prolonged | 161 |
| abstract_inverted_index.selecting | 86 |
| abstract_inverted_index.typically | 46 |
| abstract_inverted_index.variables | 131 |
| abstract_inverted_index.admissions | 127 |
| abstract_inverted_index.approaches | 170 |
| abstract_inverted_index.hardcoded, | 51 |
| abstract_inverted_index.healthcare | 130 |
| abstract_inverted_index.imputation | 97, 172 |
| abstract_inverted_index.incomplete | 194 |
| abstract_inverted_index.knowledge, | 39 |
| abstract_inverted_index.predicting | 160 |
| abstract_inverted_index.predictive | 4 |
| abstract_inverted_index.scientists | 22 |
| abstract_inverted_index.selection. | 199 |
| abstract_inverted_index.variables, | 30, 87 |
| abstract_inverted_index.variables. | 66 |
| abstract_inverted_index.(MIMIC)-IV. | 140 |
| abstract_inverted_index.Information | 135 |
| abstract_inverted_index.development | 2 |
| abstract_inverted_index.limitations | 54 |
| abstract_inverted_index.overlooked, | 95 |
| abstract_inverted_index.unnecessary. | 98 |
| abstract_inverted_index.outperforming | 168 |
| abstract_inverted_index.traditionally | 16 |
| abstract_inverted_index.0.828–0.856) | 158 |
| abstract_inverted_index.characteristic | 151 |
| abstract_inverted_index.attention-based | 70 |
| abstract_inverted_index.representation, | 79 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5050430249 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I4210131804 |
| citation_normalized_percentile.value | 0.89981353 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |