Combining Classifiers for Foreign Pattern Rejection Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.2478/jaiscr-2020-0006
In this paper, we look closely at the issue of contaminated data sets, where apart from legitimate (proper) patterns we encounter erroneous patterns. In a typical scenario, the classification of a contaminated data set is always negatively influenced by garbage patterns (referred to as foreign patterns). Ideally, we would like to remove them from the data set entirely. The paper is devoted to comparison and analysis of three different models capable to perform classification of proper patterns with rejection of foreign patterns. It should be stressed that the studied models are constructed using proper patterns only, and no knowledge about the characteristics of foreign patterns is needed. The methods are illustrated with a case study of handwritten digits recognition, but the proposed approach itself is formulated in a general manner. Therefore, it can be applied to different problems. We have distinguished three structures: global, local, and embedded, all capable to eliminate foreign patterns while performing classification of proper patterns at the same time. A comparison of the proposed models shows that the embedded structure provides the best results but at the cost of a relatively high model complexity. The local architecture provides satisfying results and at the same time is relatively simple.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2478/jaiscr-2020-0006
- https://content.sciendo.com/downloadpdf/journals/jaiscr/10/2/article-p75.pdf
- OA Status
- diamond
- Cited By
- 6
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3014453666
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3014453666Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2478/jaiscr-2020-0006Digital Object Identifier
- Title
-
Combining Classifiers for Foreign Pattern RejectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-03-20Full publication date if available
- Authors
-
Władysław Homenda, Agnieszka Jastrzębska, Witold Pedrycz, Fusheng YuList of authors in order
- Landing page
-
https://doi.org/10.2478/jaiscr-2020-0006Publisher landing page
- PDF URL
-
https://content.sciendo.com/downloadpdf/journals/jaiscr/10/2/article-p75.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://content.sciendo.com/downloadpdf/journals/jaiscr/10/2/article-p75.pdfDirect OA link when available
- Concepts
-
Computer science, Set (abstract data type), Simple (philosophy), Data mining, Pattern recognition (psychology), Architecture, Artificial intelligence, Garbage, Machine learning, Geography, Programming language, Archaeology, Epistemology, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 2, 2021: 4Per-year citation counts (last 5 years)
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3014453666 |
|---|---|
| doi | https://doi.org/10.2478/jaiscr-2020-0006 |
| ids.doi | https://doi.org/10.2478/jaiscr-2020-0006 |
| ids.mag | 3014453666 |
| ids.openalex | https://openalex.org/W3014453666 |
| fwci | 0.88115729 |
| type | article |
| title | Combining Classifiers for Foreign Pattern Rejection |
| biblio.issue | 2 |
| biblio.volume | 10 |
| biblio.last_page | 94 |
| biblio.first_page | 75 |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T12535 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9972000122070312 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Data Classification |
| topics[2].id | https://openalex.org/T12111 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9955999851226807 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2209 |
| topics[2].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[2].display_name | Industrial Vision Systems and Defect Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7542423009872437 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C177264268 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6621300578117371 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[1].display_name | Set (abstract data type) |
| concepts[2].id | https://openalex.org/C2780586882 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5732529163360596 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7520643 |
| concepts[2].display_name | Simple (philosophy) |
| concepts[3].id | https://openalex.org/C124101348 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5470850467681885 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[3].display_name | Data mining |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49688437581062317 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C123657996 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4819921851158142 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12271 |
| concepts[5].display_name | Architecture |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4523133635520935 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C75403996 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4324420690536499 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5521979 |
| concepts[7].display_name | Garbage |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3694768249988556 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.06435871124267578 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C199360897 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[10].display_name | Programming language |
| concepts[11].id | https://openalex.org/C166957645 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[11].display_name | Archaeology |
| concepts[12].id | https://openalex.org/C111472728 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[12].display_name | Epistemology |
| concepts[13].id | https://openalex.org/C138885662 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[13].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7542423009872437 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/set |
| keywords[1].score | 0.6621300578117371 |
| keywords[1].display_name | Set (abstract data type) |
| keywords[2].id | https://openalex.org/keywords/simple |
| keywords[2].score | 0.5732529163360596 |
| keywords[2].display_name | Simple (philosophy) |
| keywords[3].id | https://openalex.org/keywords/data-mining |
| keywords[3].score | 0.5470850467681885 |
| keywords[3].display_name | Data mining |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.49688437581062317 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/architecture |
| keywords[5].score | 0.4819921851158142 |
| keywords[5].display_name | Architecture |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4523133635520935 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/garbage |
| keywords[7].score | 0.4324420690536499 |
| keywords[7].display_name | Garbage |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.3694768249988556 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.06435871124267578 |
| keywords[9].display_name | Geography |
| language | en |
| locations[0].id | doi:10.2478/jaiscr-2020-0006 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210223945 |
| locations[0].source.issn | 2083-2567, 2449-6499 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2083-2567 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Artificial Intelligence and Soft Computing Research |
| locations[0].source.host_organization | https://openalex.org/P4310317241 |
| locations[0].source.host_organization_name | Polish Neural Network Society, the University of Social Sciences in Lodz & Czestochowa University of Technology |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310317241 |
| locations[0].source.host_organization_lineage_names | Polish Neural Network Society, the University of Social Sciences in Lodz & Czestochowa University of Technology |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://content.sciendo.com/downloadpdf/journals/jaiscr/10/2/article-p75.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Artificial Intelligence and Soft Computing Research |
| locations[0].landing_page_url | https://doi.org/10.2478/jaiscr-2020-0006 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5075878748 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7787-4927 |
| authorships[0].author.display_name | Władysław Homenda |
| authorships[0].countries | LT, PL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I173212132 |
| authorships[0].affiliations[0].raw_affiliation_string | The Faculty of Economics and Informatics in Vilnius , University of Bialystok , Vilnius , Lithuania |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I108403487 |
| authorships[0].affiliations[1].raw_affiliation_string | The Faculty of Mathematics and Information Science , Warsaw University of Technology , Poland |
| authorships[0].institutions[0].id | https://openalex.org/I173212132 |
| authorships[0].institutions[0].ror | https://ror.org/03nadee84 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I173212132 |
| authorships[0].institutions[0].country_code | LT |
| authorships[0].institutions[0].display_name | Vilnius University |
| authorships[0].institutions[1].id | https://openalex.org/I108403487 |
| authorships[0].institutions[1].ror | https://ror.org/00y0xnp53 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I108403487 |
| authorships[0].institutions[1].country_code | PL |
| authorships[0].institutions[1].display_name | Warsaw University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Władysław Homenda |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | The Faculty of Economics and Informatics in Vilnius , University of Bialystok , Vilnius , Lithuania, The Faculty of Mathematics and Information Science , Warsaw University of Technology , Poland |
| authorships[1].author.id | https://openalex.org/A5033442768 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5361-5787 |
| authorships[1].author.display_name | Agnieszka Jastrzębska |
| authorships[1].countries | PL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I66083562, https://openalex.org/I99542240 |
| authorships[1].affiliations[0].raw_affiliation_string | The Systems Research Institute Polish Academy of Sciences , Warsaw , Poland |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I108403487 |
| authorships[1].affiliations[1].raw_affiliation_string | The Faculty of Mathematics and Information Science , Warsaw University of Technology , Poland |
| authorships[1].institutions[0].id | https://openalex.org/I99542240 |
| authorships[1].institutions[0].ror | https://ror.org/01dr6c206 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I99542240 |
| authorships[1].institutions[0].country_code | PL |
| authorships[1].institutions[0].display_name | Polish Academy of Sciences |
| authorships[1].institutions[1].id | https://openalex.org/I66083562 |
| authorships[1].institutions[1].ror | https://ror.org/0111cp837 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I66083562, https://openalex.org/I99542240 |
| authorships[1].institutions[1].country_code | PL |
| authorships[1].institutions[1].display_name | Systems Research Institute |
| authorships[1].institutions[2].id | https://openalex.org/I108403487 |
| authorships[1].institutions[2].ror | https://ror.org/00y0xnp53 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I108403487 |
| authorships[1].institutions[2].country_code | PL |
| authorships[1].institutions[2].display_name | Warsaw University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Agnieszka Jastrzȩbska |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | The Faculty of Mathematics and Information Science , Warsaw University of Technology , Poland, The Systems Research Institute Polish Academy of Sciences , Warsaw , Poland |
| authorships[2].author.id | https://openalex.org/A5003799782 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9335-9930 |
| authorships[2].author.display_name | Witold Pedrycz |
| authorships[2].countries | CA, PL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I66083562, https://openalex.org/I99542240 |
| authorships[2].affiliations[0].raw_affiliation_string | The Systems Research Institute Polish Academy of Sciences , Warsaw , Poland |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I154425047 |
| authorships[2].affiliations[1].raw_affiliation_string | The University of Alberta , Edmonton , Canada |
| authorships[2].institutions[0].id | https://openalex.org/I154425047 |
| authorships[2].institutions[0].ror | https://ror.org/0160cpw27 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I154425047 |
| authorships[2].institutions[0].country_code | CA |
| authorships[2].institutions[0].display_name | University of Alberta |
| authorships[2].institutions[1].id | https://openalex.org/I99542240 |
| authorships[2].institutions[1].ror | https://ror.org/01dr6c206 |
| authorships[2].institutions[1].type | government |
| authorships[2].institutions[1].lineage | https://openalex.org/I99542240 |
| authorships[2].institutions[1].country_code | PL |
| authorships[2].institutions[1].display_name | Polish Academy of Sciences |
| authorships[2].institutions[2].id | https://openalex.org/I66083562 |
| authorships[2].institutions[2].ror | https://ror.org/0111cp837 |
| authorships[2].institutions[2].type | facility |
| authorships[2].institutions[2].lineage | https://openalex.org/I66083562, https://openalex.org/I99542240 |
| authorships[2].institutions[2].country_code | PL |
| authorships[2].institutions[2].display_name | Systems Research Institute |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Witold Pedrycz |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | The Systems Research Institute Polish Academy of Sciences , Warsaw , Poland, The University of Alberta , Edmonton , Canada |
| authorships[3].author.id | https://openalex.org/A5075869337 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Fusheng Yu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I25254941 |
| authorships[3].affiliations[0].raw_affiliation_string | The Beijing Normal University , Beijing , China |
| authorships[3].institutions[0].id | https://openalex.org/I25254941 |
| authorships[3].institutions[0].ror | https://ror.org/022k4wk35 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I25254941 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing Normal University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Fusheng Yu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | The Beijing Normal University , Beijing , China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://content.sciendo.com/downloadpdf/journals/jaiscr/10/2/article-p75.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Combining Classifiers for Foreign Pattern Rejection |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W2612848883, https://openalex.org/W3088744871, https://openalex.org/W4382053766, https://openalex.org/W3035541749, https://openalex.org/W2351860712, https://openalex.org/W4366783061, https://openalex.org/W2354724362, https://openalex.org/W4362509302, https://openalex.org/W4322770937, https://openalex.org/W4226365197 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 4 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2478/jaiscr-2020-0006 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210223945 |
| best_oa_location.source.issn | 2083-2567, 2449-6499 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2083-2567 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Artificial Intelligence and Soft Computing Research |
| best_oa_location.source.host_organization | https://openalex.org/P4310317241 |
| best_oa_location.source.host_organization_name | Polish Neural Network Society, the University of Social Sciences in Lodz & Czestochowa University of Technology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310317241 |
| best_oa_location.source.host_organization_lineage_names | Polish Neural Network Society, the University of Social Sciences in Lodz & Czestochowa University of Technology |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://content.sciendo.com/downloadpdf/journals/jaiscr/10/2/article-p75.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Artificial Intelligence and Soft Computing Research |
| best_oa_location.landing_page_url | https://doi.org/10.2478/jaiscr-2020-0006 |
| primary_location.id | doi:10.2478/jaiscr-2020-0006 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210223945 |
| primary_location.source.issn | 2083-2567, 2449-6499 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2083-2567 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Artificial Intelligence and Soft Computing Research |
| primary_location.source.host_organization | https://openalex.org/P4310317241 |
| primary_location.source.host_organization_name | Polish Neural Network Society, the University of Social Sciences in Lodz & Czestochowa University of Technology |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310317241 |
| primary_location.source.host_organization_lineage_names | Polish Neural Network Society, the University of Social Sciences in Lodz & Czestochowa University of Technology |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://content.sciendo.com/downloadpdf/journals/jaiscr/10/2/article-p75.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Artificial Intelligence and Soft Computing Research |
| primary_location.landing_page_url | https://doi.org/10.2478/jaiscr-2020-0006 |
| publication_date | 2020-03-20 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2424205178, https://openalex.org/W4249610508, https://openalex.org/W2884747941, https://openalex.org/W1977193067, https://openalex.org/W2518918579, https://openalex.org/W2115627867, https://openalex.org/W2539013987, https://openalex.org/W2786845965, https://openalex.org/W1983292423, https://openalex.org/W2528542283, https://openalex.org/W2087414729, https://openalex.org/W4256177618, https://openalex.org/W2144182447, https://openalex.org/W2128510565, https://openalex.org/W2032227337, https://openalex.org/W2161920802, https://openalex.org/W2132870739, https://openalex.org/W2963878656, https://openalex.org/W1981143068, https://openalex.org/W1527858862, https://openalex.org/W1986603879, https://openalex.org/W2040466852, https://openalex.org/W2146194630, https://openalex.org/W2911964244, https://openalex.org/W3102647897, https://openalex.org/W1967228187, https://openalex.org/W1988833430, https://openalex.org/W1579279110 |
| referenced_works_count | 28 |
| abstract_inverted_index.A | 164 |
| abstract_inverted_index.a | 25, 31, 113, 128, 184 |
| abstract_inverted_index.In | 1, 24 |
| abstract_inverted_index.It | 83 |
| abstract_inverted_index.We | 139 |
| abstract_inverted_index.as | 44 |
| abstract_inverted_index.at | 7, 160, 180, 196 |
| abstract_inverted_index.be | 85, 134 |
| abstract_inverted_index.by | 39 |
| abstract_inverted_index.in | 127 |
| abstract_inverted_index.is | 35, 61, 106, 125, 200 |
| abstract_inverted_index.it | 132 |
| abstract_inverted_index.no | 98 |
| abstract_inverted_index.of | 10, 30, 67, 75, 80, 103, 116, 157, 166, 183 |
| abstract_inverted_index.to | 43, 51, 63, 72, 136, 150 |
| abstract_inverted_index.we | 4, 20, 48 |
| abstract_inverted_index.The | 59, 108, 189 |
| abstract_inverted_index.all | 148 |
| abstract_inverted_index.and | 65, 97, 146, 195 |
| abstract_inverted_index.are | 91, 110 |
| abstract_inverted_index.but | 120, 179 |
| abstract_inverted_index.can | 133 |
| abstract_inverted_index.set | 34, 57 |
| abstract_inverted_index.the | 8, 28, 55, 88, 101, 121, 161, 167, 172, 176, 181, 197 |
| abstract_inverted_index.best | 177 |
| abstract_inverted_index.case | 114 |
| abstract_inverted_index.cost | 182 |
| abstract_inverted_index.data | 12, 33, 56 |
| abstract_inverted_index.from | 16, 54 |
| abstract_inverted_index.have | 140 |
| abstract_inverted_index.high | 186 |
| abstract_inverted_index.like | 50 |
| abstract_inverted_index.look | 5 |
| abstract_inverted_index.same | 162, 198 |
| abstract_inverted_index.that | 87, 171 |
| abstract_inverted_index.them | 53 |
| abstract_inverted_index.this | 2 |
| abstract_inverted_index.time | 199 |
| abstract_inverted_index.with | 78, 112 |
| abstract_inverted_index.about | 100 |
| abstract_inverted_index.apart | 15 |
| abstract_inverted_index.issue | 9 |
| abstract_inverted_index.local | 190 |
| abstract_inverted_index.model | 187 |
| abstract_inverted_index.only, | 96 |
| abstract_inverted_index.paper | 60 |
| abstract_inverted_index.sets, | 13 |
| abstract_inverted_index.shows | 170 |
| abstract_inverted_index.study | 115 |
| abstract_inverted_index.three | 68, 142 |
| abstract_inverted_index.time. | 163 |
| abstract_inverted_index.using | 93 |
| abstract_inverted_index.where | 14 |
| abstract_inverted_index.while | 154 |
| abstract_inverted_index.would | 49 |
| abstract_inverted_index.always | 36 |
| abstract_inverted_index.digits | 118 |
| abstract_inverted_index.itself | 124 |
| abstract_inverted_index.local, | 145 |
| abstract_inverted_index.models | 70, 90, 169 |
| abstract_inverted_index.paper, | 3 |
| abstract_inverted_index.proper | 76, 94, 158 |
| abstract_inverted_index.remove | 52 |
| abstract_inverted_index.should | 84 |
| abstract_inverted_index.applied | 135 |
| abstract_inverted_index.capable | 71, 149 |
| abstract_inverted_index.closely | 6 |
| abstract_inverted_index.devoted | 62 |
| abstract_inverted_index.foreign | 45, 81, 104, 152 |
| abstract_inverted_index.garbage | 40 |
| abstract_inverted_index.general | 129 |
| abstract_inverted_index.global, | 144 |
| abstract_inverted_index.manner. | 130 |
| abstract_inverted_index.methods | 109 |
| abstract_inverted_index.needed. | 107 |
| abstract_inverted_index.perform | 73 |
| abstract_inverted_index.results | 178, 194 |
| abstract_inverted_index.simple. | 202 |
| abstract_inverted_index.studied | 89 |
| abstract_inverted_index.typical | 26 |
| abstract_inverted_index.(proper) | 18 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Ideally, | 47 |
| abstract_inverted_index.analysis | 66 |
| abstract_inverted_index.approach | 123 |
| abstract_inverted_index.embedded | 173 |
| abstract_inverted_index.patterns | 19, 41, 77, 95, 105, 153, 159 |
| abstract_inverted_index.proposed | 122, 168 |
| abstract_inverted_index.provides | 175, 192 |
| abstract_inverted_index.stressed | 86 |
| abstract_inverted_index.(referred | 42 |
| abstract_inverted_index.different | 69, 137 |
| abstract_inverted_index.eliminate | 151 |
| abstract_inverted_index.embedded, | 147 |
| abstract_inverted_index.encounter | 21 |
| abstract_inverted_index.entirely. | 58 |
| abstract_inverted_index.erroneous | 22 |
| abstract_inverted_index.knowledge | 99 |
| abstract_inverted_index.patterns. | 23, 82 |
| abstract_inverted_index.problems. | 138 |
| abstract_inverted_index.rejection | 79 |
| abstract_inverted_index.scenario, | 27 |
| abstract_inverted_index.structure | 174 |
| abstract_inverted_index.Therefore, | 131 |
| abstract_inverted_index.comparison | 64, 165 |
| abstract_inverted_index.formulated | 126 |
| abstract_inverted_index.influenced | 38 |
| abstract_inverted_index.legitimate | 17 |
| abstract_inverted_index.negatively | 37 |
| abstract_inverted_index.patterns). | 46 |
| abstract_inverted_index.performing | 155 |
| abstract_inverted_index.relatively | 185, 201 |
| abstract_inverted_index.satisfying | 193 |
| abstract_inverted_index.complexity. | 188 |
| abstract_inverted_index.constructed | 92 |
| abstract_inverted_index.handwritten | 117 |
| abstract_inverted_index.illustrated | 111 |
| abstract_inverted_index.structures: | 143 |
| abstract_inverted_index.architecture | 191 |
| abstract_inverted_index.contaminated | 11, 32 |
| abstract_inverted_index.recognition, | 119 |
| abstract_inverted_index.distinguished | 141 |
| abstract_inverted_index.classification | 29, 74, 156 |
| abstract_inverted_index.characteristics | 102 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5075878748 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I108403487, https://openalex.org/I173212132 |
| citation_normalized_percentile.value | 0.78407517 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |