Combining CNNs and Markov-like Models for Facial Landmark Detection with Spatial Consistency Estimates Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/jimaging9050104
The accurate localization of facial landmarks is essential for several tasks, including face recognition, head pose estimation, facial region extraction, and emotion detection. Although the number of required landmarks is task-specific, models are typically trained on all available landmarks in the datasets, limiting efficiency. Furthermore, model performance is strongly influenced by scale-dependent local appearance information around landmarks and the global shape information generated by them. To account for this, we propose a lightweight hybrid model for facial landmark detection designed specifically for pupil region extraction. Our design combines a convolutional neural network (CNN) with a Markov random field (MRF)-like process trained on only 17 carefully selected landmarks. The advantage of our model is the ability to run different image scales on the same convolutional layers, resulting in a significant reduction in model size. In addition, we employ an approximation of the MRF that is run on a subset of landmarks to validate the spatial consistency of the generated shape. This validation process is performed against a learned conditional distribution, expressing the location of one landmark relative to its neighbor. Experimental results on popular facial landmark localization datasets such as 300 w, WFLW, and HELEN demonstrate the accuracy of our proposed model. Furthermore, our model achieves state-of-the-art performance on a well-defined robustness metric. In conclusion, the results demonstrate the ability of our lightweight model to filter out spatially inconsistent predictions, even with significantly fewer training landmarks.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/jimaging9050104
- https://www.mdpi.com/2313-433X/9/5/104/pdf?version=1684800489
- OA Status
- gold
- Cited By
- 8
- References
- 56
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4378078165
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4378078165Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/jimaging9050104Digital Object Identifier
- Title
-
Combining CNNs and Markov-like Models for Facial Landmark Detection with Spatial Consistency EstimatesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-22Full publication date if available
- Authors
-
Ahmed Gdoura, Markus Degünther, Birgit Lorenz, Alexander EfflandList of authors in order
- Landing page
-
https://doi.org/10.3390/jimaging9050104Publisher landing page
- PDF URL
-
https://www.mdpi.com/2313-433X/9/5/104/pdf?version=1684800489Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2313-433X/9/5/104/pdf?version=1684800489Direct OA link when available
- Concepts
-
Landmark, Computer science, Artificial intelligence, Markov random field, Pattern recognition (psychology), Robustness (evolution), Convolutional neural network, Feature extraction, Computer vision, Face (sociological concept), Conditional random field, Image (mathematics), Image segmentation, Gene, Sociology, Social science, Biochemistry, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 5Per-year citation counts (last 5 years)
- References (count)
-
56Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4378078165 |
|---|---|
| doi | https://doi.org/10.3390/jimaging9050104 |
| ids.doi | https://doi.org/10.3390/jimaging9050104 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37233323 |
| ids.openalex | https://openalex.org/W4378078165 |
| fwci | 1.45574672 |
| type | article |
| title | Combining CNNs and Markov-like Models for Facial Landmark Detection with Spatial Consistency Estimates |
| biblio.issue | 5 |
| biblio.volume | 9 |
| biblio.last_page | 104 |
| biblio.first_page | 104 |
| topics[0].id | https://openalex.org/T11448 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Face recognition and analysis |
| topics[1].id | https://openalex.org/T10057 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9926000237464905 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Face and Expression Recognition |
| topics[2].id | https://openalex.org/T10828 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9783999919891357 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Biometric Identification and Security |
| is_xpac | False |
| apc_list.value | 1600 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1732 |
| apc_paid.value | 1600 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1732 |
| concepts[0].id | https://openalex.org/C2780297707 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8738478422164917 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4895393 |
| concepts[0].display_name | Landmark |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8035871386528015 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7610988616943359 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2778045648 |
| concepts[3].level | 4 |
| concepts[3].score | 0.6449434757232666 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q176827 |
| concepts[3].display_name | Markov random field |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.634719967842102 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C63479239 |
| concepts[5].level | 3 |
| concepts[5].score | 0.6223598122596741 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[5].display_name | Robustness (evolution) |
| concepts[6].id | https://openalex.org/C81363708 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5870026350021362 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[6].display_name | Convolutional neural network |
| concepts[7].id | https://openalex.org/C52622490 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45251089334487915 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[7].display_name | Feature extraction |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.434287428855896 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C2779304628 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4191874563694 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3503480 |
| concepts[9].display_name | Face (sociological concept) |
| concepts[10].id | https://openalex.org/C152565575 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41371655464172363 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1124538 |
| concepts[10].display_name | Conditional random field |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.2489807903766632 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| concepts[12].id | https://openalex.org/C124504099 |
| concepts[12].level | 3 |
| concepts[12].score | 0.2244051694869995 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[12].display_name | Image segmentation |
| concepts[13].id | https://openalex.org/C104317684 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[13].display_name | Gene |
| concepts[14].id | https://openalex.org/C144024400 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[14].display_name | Sociology |
| concepts[15].id | https://openalex.org/C36289849 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[15].display_name | Social science |
| concepts[16].id | https://openalex.org/C55493867 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[16].display_name | Biochemistry |
| concepts[17].id | https://openalex.org/C185592680 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[17].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/landmark |
| keywords[0].score | 0.8738478422164917 |
| keywords[0].display_name | Landmark |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8035871386528015 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.7610988616943359 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/markov-random-field |
| keywords[3].score | 0.6449434757232666 |
| keywords[3].display_name | Markov random field |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.634719967842102 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/robustness |
| keywords[5].score | 0.6223598122596741 |
| keywords[5].display_name | Robustness (evolution) |
| keywords[6].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[6].score | 0.5870026350021362 |
| keywords[6].display_name | Convolutional neural network |
| keywords[7].id | https://openalex.org/keywords/feature-extraction |
| keywords[7].score | 0.45251089334487915 |
| keywords[7].display_name | Feature extraction |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.434287428855896 |
| keywords[8].display_name | Computer vision |
| keywords[9].id | https://openalex.org/keywords/face |
| keywords[9].score | 0.4191874563694 |
| keywords[9].display_name | Face (sociological concept) |
| keywords[10].id | https://openalex.org/keywords/conditional-random-field |
| keywords[10].score | 0.41371655464172363 |
| keywords[10].display_name | Conditional random field |
| keywords[11].id | https://openalex.org/keywords/image |
| keywords[11].score | 0.2489807903766632 |
| keywords[11].display_name | Image (mathematics) |
| keywords[12].id | https://openalex.org/keywords/image-segmentation |
| keywords[12].score | 0.2244051694869995 |
| keywords[12].display_name | Image segmentation |
| language | en |
| locations[0].id | doi:10.3390/jimaging9050104 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2736465063 |
| locations[0].source.issn | 2313-433X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2313-433X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Imaging |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2313-433X/9/5/104/pdf?version=1684800489 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Imaging |
| locations[0].landing_page_url | https://doi.org/10.3390/jimaging9050104 |
| locations[1].id | pmid:37233323 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of imaging |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37233323 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10218977 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10218977/pdf/jimaging-09-00104.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | J Imaging |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10218977 |
| locations[3].id | pmh:oai:doaj.org/article:af07f7d0595c4a2d9bf421d4b51d84c2 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Journal of Imaging, Vol 9, Iss 5, p 104 (2023) |
| locations[3].landing_page_url | https://doaj.org/article/af07f7d0595c4a2d9bf421d4b51d84c2 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5035922027 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ahmed Gdoura |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I45155027 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mathematics, Natural Sciences and Data Processing, Technische Hochschule Mittelhessen, 61169 Friedberg, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I45155027 |
| authorships[0].institutions[0].ror | https://ror.org/02qdc9985 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I45155027 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Technische Hochschule Mittelhessen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ahmed Gdoura |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Mathematics, Natural Sciences and Data Processing, Technische Hochschule Mittelhessen, 61169 Friedberg, Germany |
| authorships[1].author.id | https://openalex.org/A5014325487 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Markus Degünther |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I45155027 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Mathematics, Natural Sciences and Data Processing, Technische Hochschule Mittelhessen, 61169 Friedberg, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I45155027 |
| authorships[1].institutions[0].ror | https://ror.org/02qdc9985 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I45155027 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Technische Hochschule Mittelhessen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Markus Degünther |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Mathematics, Natural Sciences and Data Processing, Technische Hochschule Mittelhessen, 61169 Friedberg, Germany |
| authorships[2].author.id | https://openalex.org/A5024981256 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9737-8127 |
| authorships[2].author.display_name | Birgit Lorenz |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2799391451 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Ophthalmology, University Hospital Bonn, 53127 Bonn, Germany |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I200763008 |
| authorships[2].affiliations[1].raw_affiliation_string | Department of Ophthalmology, Justus-Liebig-University Gießen, 35392 Gießen, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I200763008 |
| authorships[2].institutions[0].ror | https://ror.org/033eqas34 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I200763008 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Justus-Liebig-Universität Gießen |
| authorships[2].institutions[1].id | https://openalex.org/I2799391451 |
| authorships[2].institutions[1].ror | https://ror.org/01xnwqx93 |
| authorships[2].institutions[1].type | healthcare |
| authorships[2].institutions[1].lineage | https://openalex.org/I2799391451 |
| authorships[2].institutions[1].country_code | DE |
| authorships[2].institutions[1].display_name | University Hospital Bonn |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Birgit Lorenz |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Ophthalmology, Justus-Liebig-University Gießen, 35392 Gießen, Germany, Department of Ophthalmology, University Hospital Bonn, 53127 Bonn, Germany |
| authorships[3].author.id | https://openalex.org/A5069332361 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5936-048X |
| authorships[3].author.display_name | Alexander Effland |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I135140700 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute of Applied Mathematics, University of Bonn, 53115 Bonn, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I135140700 |
| authorships[3].institutions[0].ror | https://ror.org/041nas322 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I135140700 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | University of Bonn |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Alexander Effland |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Institute of Applied Mathematics, University of Bonn, 53115 Bonn, Germany |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2313-433X/9/5/104/pdf?version=1684800489 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Combining CNNs and Markov-like Models for Facial Landmark Detection with Spatial Consistency Estimates |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11448 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Face recognition and analysis |
| related_works | https://openalex.org/W2056853153, https://openalex.org/W2057559274, https://openalex.org/W2005087563, https://openalex.org/W2378111931, https://openalex.org/W4243161226, https://openalex.org/W2950647290, https://openalex.org/W2620829895, https://openalex.org/W2126747775, https://openalex.org/W2092834568, https://openalex.org/W2095844239 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/jimaging9050104 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2736465063 |
| best_oa_location.source.issn | 2313-433X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2313-433X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Imaging |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2313-433X/9/5/104/pdf?version=1684800489 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Imaging |
| best_oa_location.landing_page_url | https://doi.org/10.3390/jimaging9050104 |
| primary_location.id | doi:10.3390/jimaging9050104 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2736465063 |
| primary_location.source.issn | 2313-433X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2313-433X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Imaging |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2313-433X/9/5/104/pdf?version=1684800489 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Imaging |
| primary_location.landing_page_url | https://doi.org/10.3390/jimaging9050104 |
| publication_date | 2023-05-22 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2013786473, https://openalex.org/W2008055112, https://openalex.org/W2152826865, https://openalex.org/W2343983868, https://openalex.org/W2038952578, https://openalex.org/W2115003374, https://openalex.org/W2963915229, https://openalex.org/W2798814244, https://openalex.org/W2999402729, https://openalex.org/W2221735899, https://openalex.org/W2562641989, https://openalex.org/W3124235528, https://openalex.org/W6840251340, https://openalex.org/W6849107749, https://openalex.org/W3210588310, https://openalex.org/W4311143489, https://openalex.org/W2982450667, https://openalex.org/W3101586476, https://openalex.org/W6767790785, https://openalex.org/W2136391815, https://openalex.org/W1922773808, https://openalex.org/W1976948919, https://openalex.org/W2736959453, https://openalex.org/W1896424170, https://openalex.org/W2725151104, https://openalex.org/W3049460872, https://openalex.org/W3035336948, https://openalex.org/W1903029394, https://openalex.org/W1901129140, https://openalex.org/W2307770531, https://openalex.org/W2518965973, https://openalex.org/W2138857742, https://openalex.org/W2609144136, https://openalex.org/W2253709148, https://openalex.org/W2894878591, https://openalex.org/W1816678934, https://openalex.org/W2906839775, https://openalex.org/W2165949176, https://openalex.org/W2937859967, https://openalex.org/W2040758894, https://openalex.org/W2102512156, https://openalex.org/W2284800790, https://openalex.org/W1796263212, https://openalex.org/W2963789946, https://openalex.org/W2013640163, https://openalex.org/W2080873731, https://openalex.org/W4313135108, https://openalex.org/W2736671157, https://openalex.org/W3124950011, https://openalex.org/W2944892540, https://openalex.org/W2981725829, https://openalex.org/W3010526057, https://openalex.org/W2885905848, https://openalex.org/W4316193371, https://openalex.org/W3092957962, https://openalex.org/W4287147412 |
| referenced_works_count | 56 |
| abstract_inverted_index.a | 71, 88, 94, 127, 146, 165, 208 |
| abstract_inverted_index.17 | 103 |
| abstract_inverted_index.In | 133, 212 |
| abstract_inverted_index.To | 65 |
| abstract_inverted_index.an | 137 |
| abstract_inverted_index.as | 188 |
| abstract_inverted_index.by | 50, 63 |
| abstract_inverted_index.in | 39, 126, 130 |
| abstract_inverted_index.is | 6, 29, 47, 112, 143, 162 |
| abstract_inverted_index.of | 3, 26, 109, 139, 148, 155, 172, 197, 219 |
| abstract_inverted_index.on | 35, 101, 120, 145, 181, 207 |
| abstract_inverted_index.to | 115, 150, 176, 223 |
| abstract_inverted_index.w, | 190 |
| abstract_inverted_index.we | 69, 135 |
| abstract_inverted_index.300 | 189 |
| abstract_inverted_index.MRF | 141 |
| abstract_inverted_index.Our | 85 |
| abstract_inverted_index.The | 0, 107 |
| abstract_inverted_index.all | 36 |
| abstract_inverted_index.and | 20, 57, 192 |
| abstract_inverted_index.are | 32 |
| abstract_inverted_index.for | 8, 67, 75, 81 |
| abstract_inverted_index.its | 177 |
| abstract_inverted_index.one | 173 |
| abstract_inverted_index.our | 110, 198, 202, 220 |
| abstract_inverted_index.out | 225 |
| abstract_inverted_index.run | 116, 144 |
| abstract_inverted_index.the | 24, 40, 58, 113, 121, 140, 152, 156, 170, 195, 214, 217 |
| abstract_inverted_index.This | 159 |
| abstract_inverted_index.even | 229 |
| abstract_inverted_index.face | 12 |
| abstract_inverted_index.head | 14 |
| abstract_inverted_index.only | 102 |
| abstract_inverted_index.pose | 15 |
| abstract_inverted_index.same | 122 |
| abstract_inverted_index.such | 187 |
| abstract_inverted_index.that | 142 |
| abstract_inverted_index.with | 93, 230 |
| abstract_inverted_index.(CNN) | 92 |
| abstract_inverted_index.HELEN | 193 |
| abstract_inverted_index.WFLW, | 191 |
| abstract_inverted_index.fewer | 232 |
| abstract_inverted_index.field | 97 |
| abstract_inverted_index.image | 118 |
| abstract_inverted_index.local | 52 |
| abstract_inverted_index.model | 45, 74, 111, 131, 203, 222 |
| abstract_inverted_index.pupil | 82 |
| abstract_inverted_index.shape | 60 |
| abstract_inverted_index.size. | 132 |
| abstract_inverted_index.them. | 64 |
| abstract_inverted_index.this, | 68 |
| abstract_inverted_index.Markov | 95 |
| abstract_inverted_index.around | 55 |
| abstract_inverted_index.design | 86 |
| abstract_inverted_index.employ | 136 |
| abstract_inverted_index.facial | 4, 17, 76, 183 |
| abstract_inverted_index.filter | 224 |
| abstract_inverted_index.global | 59 |
| abstract_inverted_index.hybrid | 73 |
| abstract_inverted_index.model. | 200 |
| abstract_inverted_index.models | 31 |
| abstract_inverted_index.neural | 90 |
| abstract_inverted_index.number | 25 |
| abstract_inverted_index.random | 96 |
| abstract_inverted_index.region | 18, 83 |
| abstract_inverted_index.scales | 119 |
| abstract_inverted_index.shape. | 158 |
| abstract_inverted_index.subset | 147 |
| abstract_inverted_index.tasks, | 10 |
| abstract_inverted_index.ability | 114, 218 |
| abstract_inverted_index.account | 66 |
| abstract_inverted_index.against | 164 |
| abstract_inverted_index.emotion | 21 |
| abstract_inverted_index.layers, | 124 |
| abstract_inverted_index.learned | 166 |
| abstract_inverted_index.metric. | 211 |
| abstract_inverted_index.network | 91 |
| abstract_inverted_index.popular | 182 |
| abstract_inverted_index.process | 99, 161 |
| abstract_inverted_index.propose | 70 |
| abstract_inverted_index.results | 180, 215 |
| abstract_inverted_index.several | 9 |
| abstract_inverted_index.spatial | 153 |
| abstract_inverted_index.trained | 34, 100 |
| abstract_inverted_index.Although | 23 |
| abstract_inverted_index.accuracy | 196 |
| abstract_inverted_index.accurate | 1 |
| abstract_inverted_index.achieves | 204 |
| abstract_inverted_index.combines | 87 |
| abstract_inverted_index.datasets | 186 |
| abstract_inverted_index.designed | 79 |
| abstract_inverted_index.landmark | 77, 174, 184 |
| abstract_inverted_index.limiting | 42 |
| abstract_inverted_index.location | 171 |
| abstract_inverted_index.proposed | 199 |
| abstract_inverted_index.relative | 175 |
| abstract_inverted_index.required | 27 |
| abstract_inverted_index.selected | 105 |
| abstract_inverted_index.strongly | 48 |
| abstract_inverted_index.training | 233 |
| abstract_inverted_index.validate | 151 |
| abstract_inverted_index.addition, | 134 |
| abstract_inverted_index.advantage | 108 |
| abstract_inverted_index.available | 37 |
| abstract_inverted_index.carefully | 104 |
| abstract_inverted_index.datasets, | 41 |
| abstract_inverted_index.detection | 78 |
| abstract_inverted_index.different | 117 |
| abstract_inverted_index.essential | 7 |
| abstract_inverted_index.generated | 62, 157 |
| abstract_inverted_index.including | 11 |
| abstract_inverted_index.landmarks | 5, 28, 38, 56, 149 |
| abstract_inverted_index.neighbor. | 178 |
| abstract_inverted_index.performed | 163 |
| abstract_inverted_index.reduction | 129 |
| abstract_inverted_index.resulting | 125 |
| abstract_inverted_index.spatially | 226 |
| abstract_inverted_index.typically | 33 |
| abstract_inverted_index.(MRF)-like | 98 |
| abstract_inverted_index.appearance | 53 |
| abstract_inverted_index.detection. | 22 |
| abstract_inverted_index.expressing | 169 |
| abstract_inverted_index.influenced | 49 |
| abstract_inverted_index.landmarks. | 106, 234 |
| abstract_inverted_index.robustness | 210 |
| abstract_inverted_index.validation | 160 |
| abstract_inverted_index.conclusion, | 213 |
| abstract_inverted_index.conditional | 167 |
| abstract_inverted_index.consistency | 154 |
| abstract_inverted_index.demonstrate | 194, 216 |
| abstract_inverted_index.efficiency. | 43 |
| abstract_inverted_index.estimation, | 16 |
| abstract_inverted_index.extraction, | 19 |
| abstract_inverted_index.extraction. | 84 |
| abstract_inverted_index.information | 54, 61 |
| abstract_inverted_index.lightweight | 72, 221 |
| abstract_inverted_index.performance | 46, 206 |
| abstract_inverted_index.significant | 128 |
| abstract_inverted_index.Experimental | 179 |
| abstract_inverted_index.Furthermore, | 44, 201 |
| abstract_inverted_index.inconsistent | 227 |
| abstract_inverted_index.localization | 2, 185 |
| abstract_inverted_index.predictions, | 228 |
| abstract_inverted_index.recognition, | 13 |
| abstract_inverted_index.specifically | 80 |
| abstract_inverted_index.well-defined | 209 |
| abstract_inverted_index.approximation | 138 |
| abstract_inverted_index.convolutional | 89, 123 |
| abstract_inverted_index.distribution, | 168 |
| abstract_inverted_index.significantly | 231 |
| abstract_inverted_index.task-specific, | 30 |
| abstract_inverted_index.scale-dependent | 51 |
| abstract_inverted_index.state-of-the-art | 205 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5069332361 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I135140700 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.80384389 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |