Combining data discretization and missing value imputation for incomplete medical datasets Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pone.0295032
Data discretization aims to transform a set of continuous features into discrete features, thus simplifying the representation of information and making it easier to understand, use, and explain. In practice, users can take advantage of the discretization process to improve knowledge discovery and data analysis on medical domain problem datasets containing continuous features. However, certain feature values were frequently missing. Many data-mining algorithms cannot handle incomplete datasets. In this study, we considered the use of both discretization and missing-value imputation to process incomplete medical datasets, examining how the order of discretization and missing-value imputation combined influenced performance. The experimental results were obtained using seven different medical domain problem datasets: two discretizers, including the minimum description length principle (MDLP) and ChiMerge; three imputation methods, including the mean/mode, classification and regression tree (CART), and k-nearest neighbor (KNN) methods; and two classifiers, including support vector machines (SVM) and the C4.5 decision tree. The results show that a better performance can be obtained by first performing discretization followed by imputation, rather than vice versa. Furthermore, the highest classification accuracy rate was achieved by combining ChiMerge and KNN with SVM.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1371/journal.pone.0295032
- https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0295032&type=printable
- OA Status
- gold
- Cited By
- 5
- References
- 49
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389165633
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389165633Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1371/journal.pone.0295032Digital Object Identifier
- Title
-
Combining data discretization and missing value imputation for incomplete medical datasetsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-30Full publication date if available
- Authors
-
Min‐Wei Huang, Chih‐Fong Tsai, Shu-Ching Tsui, Wei‐Chao LinList of authors in order
- Landing page
-
https://doi.org/10.1371/journal.pone.0295032Publisher landing page
- PDF URL
-
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0295032&type=printableDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0295032&type=printableDirect OA link when available
- Concepts
-
Imputation (statistics), Discretization, Missing data, Computer science, Data mining, Support vector machine, Decision tree, Knowledge extraction, Artificial intelligence, Pattern recognition (psychology), Machine learning, Mathematics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
49Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389165633 |
|---|---|
| doi | https://doi.org/10.1371/journal.pone.0295032 |
| ids.doi | https://doi.org/10.1371/journal.pone.0295032 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38033140 |
| ids.openalex | https://openalex.org/W4389165633 |
| fwci | 1.54480602 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000465 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Algorithms |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D060388 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Support Vector Machine |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D057225 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Data Mining |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D016000 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Cluster Analysis |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000465 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Algorithms |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D060388 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Support Vector Machine |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D057225 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Data Mining |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D016000 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Cluster Analysis |
| type | article |
| title | Combining data discretization and missing value imputation for incomplete medical datasets |
| awards[0].id | https://openalex.org/G5680276555 |
| awards[0].funder_id | https://openalex.org/F4320323441 |
| awards[0].display_name | |
| awards[0].funder_award_id | CMRPG3J0732 |
| awards[0].funder_display_name | Chang Gung Memorial Hospital, Linkou |
| awards[1].id | https://openalex.org/G1353419086 |
| awards[1].funder_id | https://openalex.org/F4320322795 |
| awards[1].display_name | |
| awards[1].funder_award_id | MOST 111-2410-H182-015-MY3 |
| awards[1].funder_display_name | Ministry of Science and Technology, Taiwan |
| biblio.issue | 11 |
| biblio.volume | 18 |
| biblio.last_page | e0295032 |
| biblio.first_page | e0295032 |
| topics[0].id | https://openalex.org/T11063 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9959999918937683 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Rough Sets and Fuzzy Logic |
| topics[1].id | https://openalex.org/T11652 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9955000281333923 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Imbalanced Data Classification Techniques |
| topics[2].id | https://openalex.org/T11396 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.9911999702453613 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3605 |
| topics[2].subfield.display_name | Health Information Management |
| topics[2].display_name | Artificial Intelligence in Healthcare |
| funders[0].id | https://openalex.org/F4320322795 |
| funders[0].ror | https://ror.org/02kv4zf79 |
| funders[0].display_name | Ministry of Science and Technology, Taiwan |
| funders[1].id | https://openalex.org/F4320323441 |
| funders[1].ror | https://ror.org/02dnn6q67 |
| funders[1].display_name | Chang Gung Memorial Hospital, Linkou |
| is_xpac | False |
| apc_list.value | 1805 |
| apc_list.currency | USD |
| apc_list.value_usd | 1805 |
| apc_paid.value | 1805 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1805 |
| concepts[0].id | https://openalex.org/C58041806 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8682301044464111 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1660484 |
| concepts[0].display_name | Imputation (statistics) |
| concepts[1].id | https://openalex.org/C73000952 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7915433645248413 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17007827 |
| concepts[1].display_name | Discretization |
| concepts[2].id | https://openalex.org/C9357733 |
| concepts[2].level | 2 |
| concepts[2].score | 0.720205545425415 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6878417 |
| concepts[2].display_name | Missing data |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6663240194320679 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C124101348 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6088193655014038 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[4].display_name | Data mining |
| concepts[5].id | https://openalex.org/C12267149 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5904194712638855 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[5].display_name | Support vector machine |
| concepts[6].id | https://openalex.org/C84525736 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5728963613510132 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q831366 |
| concepts[6].display_name | Decision tree |
| concepts[7].id | https://openalex.org/C120567893 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4425092339515686 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1582085 |
| concepts[7].display_name | Knowledge extraction |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3888104557991028 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.37676936388015747 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.32615575194358826 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.25320547819137573 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C134306372 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[12].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/imputation |
| keywords[0].score | 0.8682301044464111 |
| keywords[0].display_name | Imputation (statistics) |
| keywords[1].id | https://openalex.org/keywords/discretization |
| keywords[1].score | 0.7915433645248413 |
| keywords[1].display_name | Discretization |
| keywords[2].id | https://openalex.org/keywords/missing-data |
| keywords[2].score | 0.720205545425415 |
| keywords[2].display_name | Missing data |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6663240194320679 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/data-mining |
| keywords[4].score | 0.6088193655014038 |
| keywords[4].display_name | Data mining |
| keywords[5].id | https://openalex.org/keywords/support-vector-machine |
| keywords[5].score | 0.5904194712638855 |
| keywords[5].display_name | Support vector machine |
| keywords[6].id | https://openalex.org/keywords/decision-tree |
| keywords[6].score | 0.5728963613510132 |
| keywords[6].display_name | Decision tree |
| keywords[7].id | https://openalex.org/keywords/knowledge-extraction |
| keywords[7].score | 0.4425092339515686 |
| keywords[7].display_name | Knowledge extraction |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.3888104557991028 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.37676936388015747 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.32615575194358826 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.25320547819137573 |
| keywords[11].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1371/journal.pone.0295032 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S202381698 |
| locations[0].source.issn | 1932-6203 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1932-6203 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PLoS ONE |
| locations[0].source.host_organization | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_name | Public Library of Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_lineage_names | Public Library of Science |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0295032&type=printable |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PLOS ONE |
| locations[0].landing_page_url | https://doi.org/10.1371/journal.pone.0295032 |
| locations[1].id | pmid:38033140 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | PloS one |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38033140 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10688879 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10688879/pdf/pone.0295032.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | PLoS One |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10688879 |
| locations[3].id | pmh:oai:doaj.org/article:2638fc3d449b4bd7bbbf203982e3b886 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | PLoS ONE, Vol 18, Iss 11, p e0295032 (2023) |
| locations[3].landing_page_url | https://doaj.org/article/2638fc3d449b4bd7bbbf203982e3b886 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5032078469 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0457-0804 |
| authorships[0].author.display_name | Min‐Wei Huang |
| authorships[0].countries | TW |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210091201 |
| authorships[0].affiliations[0].raw_affiliation_string | Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung, Taiwan |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I184693016 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Physical Therapy and Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan |
| authorships[0].institutions[0].id | https://openalex.org/I184693016 |
| authorships[0].institutions[0].ror | https://ror.org/00v408z34 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I184693016 |
| authorships[0].institutions[0].country_code | TW |
| authorships[0].institutions[0].display_name | China Medical University |
| authorships[0].institutions[1].id | https://openalex.org/I4210091201 |
| authorships[0].institutions[1].ror | https://ror.org/00en92979 |
| authorships[0].institutions[1].type | healthcare |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210091201 |
| authorships[0].institutions[1].country_code | TW |
| authorships[0].institutions[1].display_name | Kaohsiung Municipal Kai-Syuan Psychiatric Hospital |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Min-Wei Huang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Physical Therapy and Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan, Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung, Taiwan |
| authorships[1].author.id | https://openalex.org/A5045234607 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5991-2253 |
| authorships[1].author.display_name | Chih‐Fong Tsai |
| authorships[1].countries | TW |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I22265921 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Information Management, National Central University, Taoyuan, Taiwan |
| authorships[1].institutions[0].id | https://openalex.org/I22265921 |
| authorships[1].institutions[0].ror | https://ror.org/00944ve71 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I22265921 |
| authorships[1].institutions[0].country_code | TW |
| authorships[1].institutions[0].display_name | National Central University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chih-Fong Tsai |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Information Management, National Central University, Taoyuan, Taiwan |
| authorships[2].author.id | https://openalex.org/A5104670480 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Shu-Ching Tsui |
| authorships[2].countries | TW |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I22265921 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Information Management, National Central University, Taoyuan, Taiwan |
| authorships[2].institutions[0].id | https://openalex.org/I22265921 |
| authorships[2].institutions[0].ror | https://ror.org/00944ve71 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I22265921 |
| authorships[2].institutions[0].country_code | TW |
| authorships[2].institutions[0].display_name | National Central University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shu-Ching Tsui |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Information Management, National Central University, Taoyuan, Taiwan |
| authorships[3].author.id | https://openalex.org/A5010914146 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5803-513X |
| authorships[3].author.display_name | Wei‐Chao Lin |
| authorships[3].countries | TW |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I173093425 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Digital Financial Technology, Chang Gung University, Taoyuan, Taiwan |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I173093425 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Information Management, Chang Gung University, Taoyuan, Taiwan |
| authorships[3].affiliations[2].institution_ids | https://openalex.org/I4210116208 |
| authorships[3].affiliations[2].raw_affiliation_string | Division of Thoracic Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan |
| authorships[3].institutions[0].id | https://openalex.org/I173093425 |
| authorships[3].institutions[0].ror | https://ror.org/00d80zx46 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I173093425 |
| authorships[3].institutions[0].country_code | TW |
| authorships[3].institutions[0].display_name | Chang Gung University |
| authorships[3].institutions[1].id | https://openalex.org/I4210116208 |
| authorships[3].institutions[1].ror | https://ror.org/02dnn6q67 |
| authorships[3].institutions[1].type | healthcare |
| authorships[3].institutions[1].lineage | https://openalex.org/I3020100970, https://openalex.org/I4210116208 |
| authorships[3].institutions[1].country_code | TW |
| authorships[3].institutions[1].display_name | Linkou Chang Gung Memorial Hospital |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Wei-Chao Lin |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Digital Financial Technology, Chang Gung University, Taoyuan, Taiwan, Department of Information Management, Chang Gung University, Taoyuan, Taiwan, Division of Thoracic Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0295032&type=printable |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Combining data discretization and missing value imputation for incomplete medical datasets |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11063 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9959999918937683 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Rough Sets and Fuzzy Logic |
| related_works | https://openalex.org/W2181530120, https://openalex.org/W4211215373, https://openalex.org/W2024529227, https://openalex.org/W1574575415, https://openalex.org/W3144172081, https://openalex.org/W3179858851, https://openalex.org/W3028371478, https://openalex.org/W2081476516, https://openalex.org/W2581984549, https://openalex.org/W3123177881 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1371/journal.pone.0295032 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S202381698 |
| best_oa_location.source.issn | 1932-6203 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1932-6203 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PLoS ONE |
| best_oa_location.source.host_organization | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_name | Public Library of Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_lineage_names | Public Library of Science |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0295032&type=printable |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PLOS ONE |
| best_oa_location.landing_page_url | https://doi.org/10.1371/journal.pone.0295032 |
| primary_location.id | doi:10.1371/journal.pone.0295032 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S202381698 |
| primary_location.source.issn | 1932-6203 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1932-6203 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PLoS ONE |
| primary_location.source.host_organization | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_name | Public Library of Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_lineage_names | Public Library of Science |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0295032&type=printable |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PLOS ONE |
| primary_location.landing_page_url | https://doi.org/10.1371/journal.pone.0295032 |
| publication_date | 2023-11-30 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4240301789, https://openalex.org/W1678889691, https://openalex.org/W2135511047, https://openalex.org/W2097994458, https://openalex.org/W6763578761, https://openalex.org/W2765619388, https://openalex.org/W2947182275, https://openalex.org/W3198140527, https://openalex.org/W3131031668, https://openalex.org/W4212857112, https://openalex.org/W4220805640, https://openalex.org/W2932881901, https://openalex.org/W2589006615, https://openalex.org/W2586632892, https://openalex.org/W2108222459, https://openalex.org/W4295117892, https://openalex.org/W2595582532, https://openalex.org/W3109682927, https://openalex.org/W4200429502, https://openalex.org/W2119047401, https://openalex.org/W4221093169, https://openalex.org/W4205409847, https://openalex.org/W2173440868, https://openalex.org/W1980192357, https://openalex.org/W1208489, https://openalex.org/W2565473667, https://openalex.org/W2966125673, https://openalex.org/W1585743408, https://openalex.org/W1987281309, https://openalex.org/W3023211159, https://openalex.org/W2142827986, https://openalex.org/W2920893575, https://openalex.org/W2955374087, https://openalex.org/W2607320737, https://openalex.org/W2478675481, https://openalex.org/W2131414141, https://openalex.org/W2767161450, https://openalex.org/W1545142063, https://openalex.org/W1987552279, https://openalex.org/W2379581788, https://openalex.org/W2791932061, https://openalex.org/W2791819468, https://openalex.org/W2508593770, https://openalex.org/W2965743638, https://openalex.org/W2099454382, https://openalex.org/W1981399499, https://openalex.org/W2950630076, https://openalex.org/W327170683, https://openalex.org/W3197494818 |
| referenced_works_count | 49 |
| abstract_inverted_index.a | 5, 153 |
| abstract_inverted_index.In | 28, 67 |
| abstract_inverted_index.be | 157 |
| abstract_inverted_index.by | 159, 164, 178 |
| abstract_inverted_index.it | 21 |
| abstract_inverted_index.of | 7, 17, 34, 74, 89 |
| abstract_inverted_index.on | 45 |
| abstract_inverted_index.to | 3, 23, 38, 80 |
| abstract_inverted_index.we | 70 |
| abstract_inverted_index.KNN | 182 |
| abstract_inverted_index.The | 97, 149 |
| abstract_inverted_index.and | 19, 26, 42, 77, 91, 118, 127, 131, 136, 144, 181 |
| abstract_inverted_index.can | 31, 156 |
| abstract_inverted_index.how | 86 |
| abstract_inverted_index.set | 6 |
| abstract_inverted_index.the | 15, 35, 72, 87, 112, 124, 145, 171 |
| abstract_inverted_index.two | 109, 137 |
| abstract_inverted_index.use | 73 |
| abstract_inverted_index.was | 176 |
| abstract_inverted_index.C4.5 | 146 |
| abstract_inverted_index.Data | 0 |
| abstract_inverted_index.Many | 60 |
| abstract_inverted_index.SVM. | 184 |
| abstract_inverted_index.aims | 2 |
| abstract_inverted_index.both | 75 |
| abstract_inverted_index.data | 43 |
| abstract_inverted_index.into | 10 |
| abstract_inverted_index.rate | 175 |
| abstract_inverted_index.show | 151 |
| abstract_inverted_index.take | 32 |
| abstract_inverted_index.than | 167 |
| abstract_inverted_index.that | 152 |
| abstract_inverted_index.this | 68 |
| abstract_inverted_index.thus | 13 |
| abstract_inverted_index.tree | 129 |
| abstract_inverted_index.use, | 25 |
| abstract_inverted_index.vice | 168 |
| abstract_inverted_index.were | 57, 100 |
| abstract_inverted_index.with | 183 |
| abstract_inverted_index.(KNN) | 134 |
| abstract_inverted_index.(SVM) | 143 |
| abstract_inverted_index.first | 160 |
| abstract_inverted_index.order | 88 |
| abstract_inverted_index.seven | 103 |
| abstract_inverted_index.three | 120 |
| abstract_inverted_index.tree. | 148 |
| abstract_inverted_index.users | 30 |
| abstract_inverted_index.using | 102 |
| abstract_inverted_index.(MDLP) | 117 |
| abstract_inverted_index.better | 154 |
| abstract_inverted_index.cannot | 63 |
| abstract_inverted_index.domain | 47, 106 |
| abstract_inverted_index.easier | 22 |
| abstract_inverted_index.handle | 64 |
| abstract_inverted_index.length | 115 |
| abstract_inverted_index.making | 20 |
| abstract_inverted_index.rather | 166 |
| abstract_inverted_index.study, | 69 |
| abstract_inverted_index.values | 56 |
| abstract_inverted_index.vector | 141 |
| abstract_inverted_index.versa. | 169 |
| abstract_inverted_index.(CART), | 130 |
| abstract_inverted_index.certain | 54 |
| abstract_inverted_index.feature | 55 |
| abstract_inverted_index.highest | 172 |
| abstract_inverted_index.improve | 39 |
| abstract_inverted_index.medical | 46, 83, 105 |
| abstract_inverted_index.minimum | 113 |
| abstract_inverted_index.problem | 48, 107 |
| abstract_inverted_index.process | 37, 81 |
| abstract_inverted_index.results | 99, 150 |
| abstract_inverted_index.support | 140 |
| abstract_inverted_index.ChiMerge | 180 |
| abstract_inverted_index.However, | 53 |
| abstract_inverted_index.accuracy | 174 |
| abstract_inverted_index.achieved | 177 |
| abstract_inverted_index.analysis | 44 |
| abstract_inverted_index.combined | 94 |
| abstract_inverted_index.datasets | 49 |
| abstract_inverted_index.decision | 147 |
| abstract_inverted_index.discrete | 11 |
| abstract_inverted_index.explain. | 27 |
| abstract_inverted_index.features | 9 |
| abstract_inverted_index.followed | 163 |
| abstract_inverted_index.machines | 142 |
| abstract_inverted_index.methods, | 122 |
| abstract_inverted_index.methods; | 135 |
| abstract_inverted_index.missing. | 59 |
| abstract_inverted_index.neighbor | 133 |
| abstract_inverted_index.obtained | 101, 158 |
| abstract_inverted_index.ChiMerge; | 119 |
| abstract_inverted_index.advantage | 33 |
| abstract_inverted_index.combining | 179 |
| abstract_inverted_index.datasets, | 84 |
| abstract_inverted_index.datasets. | 66 |
| abstract_inverted_index.datasets: | 108 |
| abstract_inverted_index.different | 104 |
| abstract_inverted_index.discovery | 41 |
| abstract_inverted_index.examining | 85 |
| abstract_inverted_index.features, | 12 |
| abstract_inverted_index.features. | 52 |
| abstract_inverted_index.including | 111, 123, 139 |
| abstract_inverted_index.k-nearest | 132 |
| abstract_inverted_index.knowledge | 40 |
| abstract_inverted_index.practice, | 29 |
| abstract_inverted_index.principle | 116 |
| abstract_inverted_index.transform | 4 |
| abstract_inverted_index.algorithms | 62 |
| abstract_inverted_index.considered | 71 |
| abstract_inverted_index.containing | 50 |
| abstract_inverted_index.continuous | 8, 51 |
| abstract_inverted_index.frequently | 58 |
| abstract_inverted_index.imputation | 79, 93, 121 |
| abstract_inverted_index.incomplete | 65, 82 |
| abstract_inverted_index.influenced | 95 |
| abstract_inverted_index.mean/mode, | 125 |
| abstract_inverted_index.performing | 161 |
| abstract_inverted_index.regression | 128 |
| abstract_inverted_index.data-mining | 61 |
| abstract_inverted_index.description | 114 |
| abstract_inverted_index.imputation, | 165 |
| abstract_inverted_index.information | 18 |
| abstract_inverted_index.performance | 155 |
| abstract_inverted_index.simplifying | 14 |
| abstract_inverted_index.understand, | 24 |
| abstract_inverted_index.Furthermore, | 170 |
| abstract_inverted_index.classifiers, | 138 |
| abstract_inverted_index.experimental | 98 |
| abstract_inverted_index.performance. | 96 |
| abstract_inverted_index.discretizers, | 110 |
| abstract_inverted_index.missing-value | 78, 92 |
| abstract_inverted_index.classification | 126, 173 |
| abstract_inverted_index.discretization | 1, 36, 76, 90, 162 |
| abstract_inverted_index.representation | 16 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5010914146 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I173093425, https://openalex.org/I4210116208 |
| citation_normalized_percentile.value | 0.82897668 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |