Combining Harmonic Sampling with the Worm Algorithm to Improve the Efficiency of Path Integral Monte Carlo Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.04597
We propose an improved Path Integral Monte Carlo (PIMC) algorithm called Harmonic PIMC (H-PIMC) and its generalization, Mixed PIMC (M-PIMC). PIMC is a powerful tool for studying quantum condensed phases. However, it often suffers from a low acceptance ratio for solids and dense confined liquids. We develop two sampling schemes especially suited for such problems by dividing the potential into its harmonic and anharmonic contributions. In H-PIMC, we generate the imaginary time paths for the harmonic part of the potential exactly and accept or reject it based on the anharmonic part. In M-PIMC, we restrict the harmonic sampling to the vicinity of local minimum and use standard PIMC otherwise, to optimize efficiency. We benchmark H-PIMC on systems with increasing anharmonicity, improving the acceptance ratio and lowering the auto-correlation time. For weakly to moderately anharmonic systems, at $β\hbar ω=16$, H-PIMC improves the acceptance ratio by a factor of 6-16 and reduces the autocorrelation time by a factor of 7-30. We also find that the method requires a smaller number of imaginary time slices for convergence, which leads to another two- to four-fold acceleration. For strongly anharmonic systems, M-PIMC converges with a similar number of imaginary time slices as standard PIMC, but allows the optimization of the auto-correlation time. We extend M-PIMC to periodic systems and apply it to a sinusoidal potential. Finally, we combine H- and M-PIMC with the worm algorithm, allowing us to obtain similar efficiency gains for systems of indistinguishable particles.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2511.04597
- https://arxiv.org/pdf/2511.04597
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416026977
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416026977Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.04597Digital Object Identifier
- Title
-
Combining Harmonic Sampling with the Worm Algorithm to Improve the Efficiency of Path Integral Monte CarloWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-06Full publication date if available
- Authors
-
Sourav Karmakar, S. Paul, Adrian Del Maestro, Barak HirshbergList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.04597Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.04597Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.04597Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416026977 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.04597 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.04597 |
| ids.openalex | https://openalex.org/W4416026977 |
| fwci | |
| type | preprint |
| title | Combining Harmonic Sampling with the Worm Algorithm to Improve the Efficiency of Path Integral Monte Carlo |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.04597 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.04597 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.04597 |
| locations[1].id | doi:10.48550/arxiv.2511.04597 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2511.04597 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5046205455 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9439-1062 |
| authorships[0].author.display_name | Sourav Karmakar |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Karmakar, Sourav |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5014733506 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8813-0437 |
| authorships[1].author.display_name | S. Paul |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Paul, Sutirtha |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5038422656 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9483-8258 |
| authorships[2].author.display_name | Adrian Del Maestro |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Del Maestro, Adrian |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5080937382 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0014-515X |
| authorships[3].author.display_name | Barak Hirshberg |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Hirshberg, Barak |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.04597 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-08T00:00:00 |
| display_name | Combining Harmonic Sampling with the Worm Algorithm to Improve the Efficiency of Path Integral Monte Carlo |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-09T23:09:16.995542 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.04597 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.04597 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.04597 |
| primary_location.id | pmh:oai:arXiv.org:2511.04597 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.04597 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.04597 |
| publication_date | 2025-11-06 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 22, 35, 144, 154, 165, 189, 217 |
| abstract_inverted_index.H- | 223 |
| abstract_inverted_index.In | 65, 91 |
| abstract_inverted_index.We | 0, 45, 112, 158, 207 |
| abstract_inverted_index.an | 2 |
| abstract_inverted_index.as | 196 |
| abstract_inverted_index.at | 135 |
| abstract_inverted_index.by | 55, 143, 153 |
| abstract_inverted_index.is | 21 |
| abstract_inverted_index.it | 31, 85, 215 |
| abstract_inverted_index.of | 77, 101, 146, 156, 168, 192, 203, 239 |
| abstract_inverted_index.on | 87, 115 |
| abstract_inverted_index.or | 83 |
| abstract_inverted_index.to | 98, 109, 131, 176, 179, 210, 216, 232 |
| abstract_inverted_index.us | 231 |
| abstract_inverted_index.we | 67, 93, 221 |
| abstract_inverted_index.For | 129, 182 |
| abstract_inverted_index.and | 14, 41, 62, 81, 104, 124, 148, 213, 224 |
| abstract_inverted_index.but | 199 |
| abstract_inverted_index.for | 25, 39, 52, 73, 172, 237 |
| abstract_inverted_index.its | 15, 60 |
| abstract_inverted_index.low | 36 |
| abstract_inverted_index.the | 57, 69, 74, 78, 88, 95, 99, 121, 126, 140, 150, 162, 201, 204, 227 |
| abstract_inverted_index.two | 47 |
| abstract_inverted_index.use | 105 |
| abstract_inverted_index.6-16 | 147 |
| abstract_inverted_index.PIMC | 12, 18, 20, 107 |
| abstract_inverted_index.Path | 4 |
| abstract_inverted_index.also | 159 |
| abstract_inverted_index.find | 160 |
| abstract_inverted_index.from | 34 |
| abstract_inverted_index.into | 59 |
| abstract_inverted_index.part | 76 |
| abstract_inverted_index.such | 53 |
| abstract_inverted_index.that | 161 |
| abstract_inverted_index.time | 71, 152, 170, 194 |
| abstract_inverted_index.tool | 24 |
| abstract_inverted_index.two- | 178 |
| abstract_inverted_index.with | 117, 188, 226 |
| abstract_inverted_index.worm | 228 |
| abstract_inverted_index.7-30. | 157 |
| abstract_inverted_index.Carlo | 7 |
| abstract_inverted_index.Mixed | 17 |
| abstract_inverted_index.Monte | 6 |
| abstract_inverted_index.PIMC, | 198 |
| abstract_inverted_index.apply | 214 |
| abstract_inverted_index.based | 86 |
| abstract_inverted_index.dense | 42 |
| abstract_inverted_index.gains | 236 |
| abstract_inverted_index.leads | 175 |
| abstract_inverted_index.local | 102 |
| abstract_inverted_index.often | 32 |
| abstract_inverted_index.part. | 90 |
| abstract_inverted_index.paths | 72 |
| abstract_inverted_index.ratio | 38, 123, 142 |
| abstract_inverted_index.time. | 128, 206 |
| abstract_inverted_index.which | 174 |
| abstract_inverted_index.(PIMC) | 8 |
| abstract_inverted_index.H-PIMC | 114, 138 |
| abstract_inverted_index.M-PIMC | 186, 209, 225 |
| abstract_inverted_index.accept | 82 |
| abstract_inverted_index.allows | 200 |
| abstract_inverted_index.called | 10 |
| abstract_inverted_index.extend | 208 |
| abstract_inverted_index.factor | 145, 155 |
| abstract_inverted_index.method | 163 |
| abstract_inverted_index.number | 167, 191 |
| abstract_inverted_index.obtain | 233 |
| abstract_inverted_index.reject | 84 |
| abstract_inverted_index.slices | 171, 195 |
| abstract_inverted_index.solids | 40 |
| abstract_inverted_index.suited | 51 |
| abstract_inverted_index.weakly | 130 |
| abstract_inverted_index.H-PIMC, | 66 |
| abstract_inverted_index.M-PIMC, | 92 |
| abstract_inverted_index.another | 177 |
| abstract_inverted_index.combine | 222 |
| abstract_inverted_index.develop | 46 |
| abstract_inverted_index.exactly | 80 |
| abstract_inverted_index.minimum | 103 |
| abstract_inverted_index.phases. | 29 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.quantum | 27 |
| abstract_inverted_index.reduces | 149 |
| abstract_inverted_index.schemes | 49 |
| abstract_inverted_index.similar | 190, 234 |
| abstract_inverted_index.smaller | 166 |
| abstract_inverted_index.suffers | 33 |
| abstract_inverted_index.systems | 116, 212, 238 |
| abstract_inverted_index.ω=16$, | 137 |
| abstract_inverted_index.$β\hbar | 136 |
| abstract_inverted_index.(H-PIMC) | 13 |
| abstract_inverted_index.Finally, | 220 |
| abstract_inverted_index.Harmonic | 11 |
| abstract_inverted_index.However, | 30 |
| abstract_inverted_index.Integral | 5 |
| abstract_inverted_index.allowing | 230 |
| abstract_inverted_index.confined | 43 |
| abstract_inverted_index.dividing | 56 |
| abstract_inverted_index.generate | 68 |
| abstract_inverted_index.harmonic | 61, 75, 96 |
| abstract_inverted_index.improved | 3 |
| abstract_inverted_index.improves | 139 |
| abstract_inverted_index.liquids. | 44 |
| abstract_inverted_index.lowering | 125 |
| abstract_inverted_index.optimize | 110 |
| abstract_inverted_index.periodic | 211 |
| abstract_inverted_index.powerful | 23 |
| abstract_inverted_index.problems | 54 |
| abstract_inverted_index.requires | 164 |
| abstract_inverted_index.restrict | 94 |
| abstract_inverted_index.sampling | 48, 97 |
| abstract_inverted_index.standard | 106, 197 |
| abstract_inverted_index.strongly | 183 |
| abstract_inverted_index.studying | 26 |
| abstract_inverted_index.systems, | 134, 185 |
| abstract_inverted_index.vicinity | 100 |
| abstract_inverted_index.(M-PIMC). | 19 |
| abstract_inverted_index.algorithm | 9 |
| abstract_inverted_index.benchmark | 113 |
| abstract_inverted_index.condensed | 28 |
| abstract_inverted_index.converges | 187 |
| abstract_inverted_index.four-fold | 180 |
| abstract_inverted_index.imaginary | 70, 169, 193 |
| abstract_inverted_index.improving | 120 |
| abstract_inverted_index.potential | 58, 79 |
| abstract_inverted_index.acceptance | 37, 122, 141 |
| abstract_inverted_index.algorithm, | 229 |
| abstract_inverted_index.anharmonic | 63, 89, 133, 184 |
| abstract_inverted_index.efficiency | 235 |
| abstract_inverted_index.especially | 50 |
| abstract_inverted_index.increasing | 118 |
| abstract_inverted_index.moderately | 132 |
| abstract_inverted_index.otherwise, | 108 |
| abstract_inverted_index.particles. | 241 |
| abstract_inverted_index.potential. | 219 |
| abstract_inverted_index.sinusoidal | 218 |
| abstract_inverted_index.efficiency. | 111 |
| abstract_inverted_index.convergence, | 173 |
| abstract_inverted_index.optimization | 202 |
| abstract_inverted_index.acceleration. | 181 |
| abstract_inverted_index.anharmonicity, | 119 |
| abstract_inverted_index.contributions. | 64 |
| abstract_inverted_index.autocorrelation | 151 |
| abstract_inverted_index.generalization, | 16 |
| abstract_inverted_index.auto-correlation | 127, 205 |
| abstract_inverted_index.indistinguishable | 240 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |