Combining natural and artificial intelligence for robust automatic anatomy segmentation: Application in neck and thorax auto‐contouring Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1002/mp.15854
Background Automatic segmentation of 3D objects in computed tomography (CT) is challenging. Current methods, based mainly on artificial intelligence (AI) and end‐to‐end deep learning (DL) networks, are weak in garnering high‐level anatomic information, which leads to compromised efficiency and robustness. This can be overcome by incorporating natural intelligence (NI) into AI methods via computational models of human anatomic knowledge. Purpose We formulate a hybrid intelligence (HI) approach that integrates the complementary strengths of NI and AI for organ segmentation in CT images and illustrate performance in the application of radiation therapy (RT) planning via multisite clinical evaluation. Methods The system employs five modules: (i) body region recognition, which automatically trims a given image to a precisely defined target body region; (ii) NI‐based automatic anatomy recognition object recognition (AAR‐R), which performs object recognition in the trimmed image without DL and outputs a localized fuzzy model for each object; (iii) DL‐based recognition (DL‐R), which refines the coarse recognition results of AAR‐R and outputs a stack of 2D bounding boxes (BBs) for each object; (iv) model morphing (MM), which deforms the AAR‐R fuzzy model of each object guided by the BBs output by DL‐R; and (v) DL‐based delineation (DL‐D), which employs the object containment information provided by MM to delineate each object. NI from (ii), AI from (i), (iii), and (v), and their combination from (iv) facilitate the HI system. Results The HI system was tested on 26 organs in neck and thorax body regions on CT images obtained prospectively from 464 patients in a study involving four RT centers. Data sets from one separate independent institution involving 125 patients were employed in training/model building for each of the two body regions, whereas 104 and 110 data sets from the 4 RT centers were utilized for testing on neck and thorax, respectively. In the testing data sets, 83% of the images had limitations such as streak artifacts, poor contrast, shape distortion, pathology, or implants. The contours output by the HI system were compared to contours drawn in clinical practice at the four RT centers by utilizing an independently established ground‐truth set of contours as reference. Three sets of measures were employed: accuracy via Dice coefficient (DC) and Hausdorff boundary distance (HD), subjective clinical acceptability via a blinded reader study, and efficiency by measuring human time saved in contouring by the HI system. Overall, the HI system achieved a mean DC of 0.78 and 0.87 and a mean HD of 2.22 and 4.53 mm for neck and thorax, respectively. It significantly outperformed clinical contouring in accuracy and saved overall 70% of human time over clinical contouring time, whereas acceptability scores varied significantly from site to site for both auto‐contours and clinically drawn contours. Conclusions The HI system is observed to behave like an expert human in robustness in the contouring task but vastly more efficiently. It seems to use NI help where image information alone will not suffice to decide, first for the correct localization of the object and then for the precise delineation of the boundary.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/mp.15854
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mp.15854
- OA Status
- bronze
- Cited By
- 27
- References
- 99
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4285390037
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4285390037Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/mp.15854Digital Object Identifier
- Title
-
Combining natural and artificial intelligence for robust automatic anatomy segmentation: Application in neck and thorax auto‐contouringWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-07-14Full publication date if available
- Authors
-
Jayaram K. Udupa, Tiange Liu, Chao Jin, Liming Zhao, Dewey Odhner, Yubing Tong, Vibhu Agrawal, Gargi Pednekar, Sanghita Nag, Tarun Kotia, Michael Goodman, E. Paul Wileyto, D Mihailidis, John N. Lukens, Abigail T. Berman, Joann Stambaugh, Tristan Lim, Rupa Chowdary, Dheeraj Jalluri, Salma K. Jabbour, Sung Kim, Meral Reyhan, Clifford G. Robinson, Wade L. Thorstad, Jehee Isabelle Choi, Robert H. Press, Charles B. Simone, Joe Camaratta, Steve Owens, Drew A. TorigianList of authors in order
- Landing page
-
https://doi.org/10.1002/mp.15854Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mp.15854Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mp.15854Direct OA link when available
- Concepts
-
Artificial intelligence, Segmentation, Computer science, Contouring, Robustness (evolution), Computer vision, Deep learning, Cognitive neuroscience of visual object recognition, Pattern recognition (psychology), Dice, Medical imaging, Image segmentation, Object (grammar), Biology, Mathematics, Computer graphics (images), Geometry, Biochemistry, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
27Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 10, 2024: 8, 2023: 8, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
99Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4285390037 |
|---|---|
| doi | https://doi.org/10.1002/mp.15854 |
| ids.doi | https://doi.org/10.1002/mp.15854 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35833287 |
| ids.openalex | https://openalex.org/W4285390037 |
| fwci | 2.99692899 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D001185 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Artificial Intelligence |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D054893 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Cone-Beam Computed Tomography |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D006801 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Humans |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D001185 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Artificial Intelligence |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D054893 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Cone-Beam Computed Tomography |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006801 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Humans |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D001185 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Artificial Intelligence |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D054893 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Cone-Beam Computed Tomography |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D006801 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Humans |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D001185 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Artificial Intelligence |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D054893 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Cone-Beam Computed Tomography |
| type | article |
| title | Combining natural and artificial intelligence for robust automatic anatomy segmentation: Application in neck and thorax auto‐contouring |
| awards[0].id | https://openalex.org/G1003450521 |
| awards[0].funder_id | https://openalex.org/F4320337351 |
| awards[0].display_name | |
| awards[0].funder_award_id | R42CA199735 |
| awards[0].funder_display_name | National Cancer Institute |
| biblio.issue | 11 |
| biblio.volume | 49 |
| biblio.last_page | 7149 |
| biblio.first_page | 7118 |
| topics[0].id | https://openalex.org/T14510 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Medical Imaging and Analysis |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9951000213623047 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T11363 |
| topics[2].field.id | https://openalex.org/fields/35 |
| topics[2].field.display_name | Dentistry |
| topics[2].score | 0.9943000078201294 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3504 |
| topics[2].subfield.display_name | Oral Surgery |
| topics[2].display_name | Dental Radiography and Imaging |
| funders[0].id | https://openalex.org/F4320337351 |
| funders[0].ror | https://ror.org/040gcmg81 |
| funders[0].display_name | National Cancer Institute |
| is_xpac | False |
| apc_list.value | 3040 |
| apc_list.currency | USD |
| apc_list.value_usd | 3040 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.8077565431594849 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6386407613754272 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6004176139831543 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2779104521 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5768939852714539 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q23058469 |
| concepts[3].display_name | Contouring |
| concepts[4].id | https://openalex.org/C63479239 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5392090082168579 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[4].display_name | Robustness (evolution) |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5389602184295654 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4849267303943634 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C64876066 |
| concepts[7].level | 3 |
| concepts[7].score | 0.46648576855659485 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5141226 |
| concepts[7].display_name | Cognitive neuroscience of visual object recognition |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.46052369475364685 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C22029948 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4451773762702942 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q45089 |
| concepts[9].display_name | Dice |
| concepts[10].id | https://openalex.org/C31601959 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4261084198951721 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q931309 |
| concepts[10].display_name | Medical imaging |
| concepts[11].id | https://openalex.org/C124504099 |
| concepts[11].level | 3 |
| concepts[11].score | 0.41312727332115173 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[11].display_name | Image segmentation |
| concepts[12].id | https://openalex.org/C2781238097 |
| concepts[12].level | 2 |
| concepts[12].score | 0.36645931005477905 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[12].display_name | Object (grammar) |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.09367036819458008 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.08672919869422913 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C121684516 |
| concepts[15].level | 1 |
| concepts[15].score | 0.08321556448936462 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7600677 |
| concepts[15].display_name | Computer graphics (images) |
| concepts[16].id | https://openalex.org/C2524010 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[16].display_name | Geometry |
| concepts[17].id | https://openalex.org/C55493867 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[17].display_name | Biochemistry |
| concepts[18].id | https://openalex.org/C104317684 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[18].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.8077565431594849 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.6386407613754272 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6004176139831543 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/contouring |
| keywords[3].score | 0.5768939852714539 |
| keywords[3].display_name | Contouring |
| keywords[4].id | https://openalex.org/keywords/robustness |
| keywords[4].score | 0.5392090082168579 |
| keywords[4].display_name | Robustness (evolution) |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.5389602184295654 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.4849267303943634 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/cognitive-neuroscience-of-visual-object-recognition |
| keywords[7].score | 0.46648576855659485 |
| keywords[7].display_name | Cognitive neuroscience of visual object recognition |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.46052369475364685 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/dice |
| keywords[9].score | 0.4451773762702942 |
| keywords[9].display_name | Dice |
| keywords[10].id | https://openalex.org/keywords/medical-imaging |
| keywords[10].score | 0.4261084198951721 |
| keywords[10].display_name | Medical imaging |
| keywords[11].id | https://openalex.org/keywords/image-segmentation |
| keywords[11].score | 0.41312727332115173 |
| keywords[11].display_name | Image segmentation |
| keywords[12].id | https://openalex.org/keywords/object |
| keywords[12].score | 0.36645931005477905 |
| keywords[12].display_name | Object (grammar) |
| keywords[13].id | https://openalex.org/keywords/biology |
| keywords[13].score | 0.09367036819458008 |
| keywords[13].display_name | Biology |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.08672919869422913 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/computer-graphics |
| keywords[15].score | 0.08321556448936462 |
| keywords[15].display_name | Computer graphics (images) |
| language | en |
| locations[0].id | doi:10.1002/mp.15854 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S95522064 |
| locations[0].source.issn | 0094-2405, 1522-8541, 2473-4209 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0094-2405 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Medical Physics |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mp.15854 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Medical Physics |
| locations[0].landing_page_url | https://doi.org/10.1002/mp.15854 |
| locations[1].id | pmid:35833287 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Medical physics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35833287 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10087050 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by-nc-nd |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10087050/pdf/MP-49-7118.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Med Phys |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10087050 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5065713856 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7361-2927 |
| authorships[0].author.display_name | Jayaram K. Udupa |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[0].affiliations[0].raw_affiliation_string | Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[0].institutions[0].id | https://openalex.org/I79576946 |
| authorships[0].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Pennsylvania |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jayaram K. Udupa |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[1].author.id | https://openalex.org/A5101676129 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2749-9812 |
| authorships[1].author.display_name | Tiange Liu |
| authorships[1].countries | CN, US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[1].affiliations[0].raw_affiliation_string | Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I39333907 |
| authorships[1].affiliations[1].raw_affiliation_string | School of Information Science and Engineering, Yanshan University, Qinhuangdao, China |
| authorships[1].institutions[0].id | https://openalex.org/I39333907 |
| authorships[1].institutions[0].ror | https://ror.org/02txfnf15 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I39333907 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Yanshan University |
| authorships[1].institutions[1].id | https://openalex.org/I79576946 |
| authorships[1].institutions[1].ror | https://ror.org/00b30xv10 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I79576946 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | University of Pennsylvania |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tiange Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA, School of Information Science and Engineering, Yanshan University, Qinhuangdao, China |
| authorships[2].author.id | https://openalex.org/A5074344378 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6590-333X |
| authorships[2].author.display_name | Chao Jin |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[2].affiliations[0].raw_affiliation_string | Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[2].institutions[0].id | https://openalex.org/I79576946 |
| authorships[2].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Pennsylvania |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chao Jin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[3].author.id | https://openalex.org/A5068836939 |
| authorships[3].author.orcid | https://orcid.org/0009-0000-1282-6561 |
| authorships[3].author.display_name | Liming Zhao |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[3].affiliations[0].raw_affiliation_string | Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[3].institutions[0].id | https://openalex.org/I79576946 |
| authorships[3].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Pennsylvania |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liming Zhao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[4].author.id | https://openalex.org/A5069851642 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6124-8796 |
| authorships[4].author.display_name | Dewey Odhner |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[4].affiliations[0].raw_affiliation_string | Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[4].institutions[0].id | https://openalex.org/I79576946 |
| authorships[4].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Pennsylvania |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Dewey Odhner |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[5].author.id | https://openalex.org/A5026804587 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2133-4910 |
| authorships[5].author.display_name | Yubing Tong |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[5].affiliations[0].raw_affiliation_string | Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[5].institutions[0].id | https://openalex.org/I79576946 |
| authorships[5].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of Pennsylvania |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yubing Tong |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[6].author.id | https://openalex.org/A5063109122 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Vibhu Agrawal |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[6].affiliations[0].raw_affiliation_string | Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[6].institutions[0].id | https://openalex.org/I79576946 |
| authorships[6].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | University of Pennsylvania |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Vibhu Agrawal |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[7].author.id | https://openalex.org/A5015838477 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-4734-9598 |
| authorships[7].author.display_name | Gargi Pednekar |
| authorships[7].affiliations[0].raw_affiliation_string | Quantitative Radiology Solutions, Philadelphia, Pennsylvania, USA |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Gargi Pednekar |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Quantitative Radiology Solutions, Philadelphia, Pennsylvania, USA |
| authorships[8].author.id | https://openalex.org/A5078429603 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Sanghita Nag |
| authorships[8].affiliations[0].raw_affiliation_string | Quantitative Radiology Solutions, Philadelphia, Pennsylvania, USA |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Sanghita Nag |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Quantitative Radiology Solutions, Philadelphia, Pennsylvania, USA |
| authorships[9].author.id | https://openalex.org/A5035059310 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Tarun Kotia |
| authorships[9].affiliations[0].raw_affiliation_string | Quantitative Radiology Solutions, Philadelphia, Pennsylvania, USA |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Tarun Kotia |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Quantitative Radiology Solutions, Philadelphia, Pennsylvania, USA |
| authorships[10].author.id | https://openalex.org/A5011837566 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-6956-6879 |
| authorships[10].author.display_name | Michael Goodman |
| authorships[10].affiliations[0].raw_affiliation_string | Quantitative Radiology Solutions, Philadelphia, Pennsylvania, USA |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Michael Goodman |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Quantitative Radiology Solutions, Philadelphia, Pennsylvania, USA |
| authorships[11].author.id | https://openalex.org/A5061994382 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-4389-1128 |
| authorships[11].author.display_name | E. Paul Wileyto |
| authorships[11].countries | US |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[11].affiliations[0].raw_affiliation_string | Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[11].institutions[0].id | https://openalex.org/I79576946 |
| authorships[11].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[11].institutions[0].country_code | US |
| authorships[11].institutions[0].display_name | University of Pennsylvania |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | E. Paul Wileyto |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[12].author.id | https://openalex.org/A5079431908 |
| authorships[12].author.orcid | |
| authorships[12].author.display_name | D Mihailidis |
| authorships[12].countries | US |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[12].affiliations[0].raw_affiliation_string | Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[12].institutions[0].id | https://openalex.org/I79576946 |
| authorships[12].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[12].institutions[0].type | education |
| authorships[12].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[12].institutions[0].country_code | US |
| authorships[12].institutions[0].display_name | University of Pennsylvania |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Dimitris Mihailidis |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[13].author.id | https://openalex.org/A5009745981 |
| authorships[13].author.orcid | https://orcid.org/0000-0001-7104-413X |
| authorships[13].author.display_name | John N. Lukens |
| authorships[13].countries | US |
| authorships[13].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[13].affiliations[0].raw_affiliation_string | Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[13].institutions[0].id | https://openalex.org/I79576946 |
| authorships[13].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[13].institutions[0].type | education |
| authorships[13].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[13].institutions[0].country_code | US |
| authorships[13].institutions[0].display_name | University of Pennsylvania |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | John Nicholas Lukens |
| authorships[13].is_corresponding | False |
| authorships[13].raw_affiliation_strings | Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[14].author.id | https://openalex.org/A5082385497 |
| authorships[14].author.orcid | https://orcid.org/0000-0002-9969-3462 |
| authorships[14].author.display_name | Abigail T. Berman |
| authorships[14].countries | US |
| authorships[14].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[14].affiliations[0].raw_affiliation_string | Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[14].institutions[0].id | https://openalex.org/I79576946 |
| authorships[14].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[14].institutions[0].type | education |
| authorships[14].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[14].institutions[0].country_code | US |
| authorships[14].institutions[0].display_name | University of Pennsylvania |
| authorships[14].author_position | middle |
| authorships[14].raw_author_name | Abigail T. Berman |
| authorships[14].is_corresponding | False |
| authorships[14].raw_affiliation_strings | Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[15].author.id | https://openalex.org/A5056584558 |
| authorships[15].author.orcid | |
| authorships[15].author.display_name | Joann Stambaugh |
| authorships[15].countries | US |
| authorships[15].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[15].affiliations[0].raw_affiliation_string | Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[15].institutions[0].id | https://openalex.org/I79576946 |
| authorships[15].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[15].institutions[0].type | education |
| authorships[15].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[15].institutions[0].country_code | US |
| authorships[15].institutions[0].display_name | University of Pennsylvania |
| authorships[15].author_position | middle |
| authorships[15].raw_author_name | Joann Stambaugh |
| authorships[15].is_corresponding | False |
| authorships[15].raw_affiliation_strings | Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[16].author.id | https://openalex.org/A5103168307 |
| authorships[16].author.orcid | https://orcid.org/0000-0002-3798-5400 |
| authorships[16].author.display_name | Tristan Lim |
| authorships[16].countries | US |
| authorships[16].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[16].affiliations[0].raw_affiliation_string | Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[16].institutions[0].id | https://openalex.org/I79576946 |
| authorships[16].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[16].institutions[0].type | education |
| authorships[16].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[16].institutions[0].country_code | US |
| authorships[16].institutions[0].display_name | University of Pennsylvania |
| authorships[16].author_position | middle |
| authorships[16].raw_author_name | Tristan Lim |
| authorships[16].is_corresponding | False |
| authorships[16].raw_affiliation_strings | Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[17].author.id | https://openalex.org/A5083618993 |
| authorships[17].author.orcid | |
| authorships[17].author.display_name | Rupa Chowdary |
| authorships[17].countries | US |
| authorships[17].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[17].affiliations[0].raw_affiliation_string | Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[17].institutions[0].id | https://openalex.org/I79576946 |
| authorships[17].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[17].institutions[0].type | education |
| authorships[17].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[17].institutions[0].country_code | US |
| authorships[17].institutions[0].display_name | University of Pennsylvania |
| authorships[17].author_position | middle |
| authorships[17].raw_author_name | Rupa Chowdary |
| authorships[17].is_corresponding | False |
| authorships[17].raw_affiliation_strings | Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[18].author.id | https://openalex.org/A5009676183 |
| authorships[18].author.orcid | |
| authorships[18].author.display_name | Dheeraj Jalluri |
| authorships[18].countries | US |
| authorships[18].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[18].affiliations[0].raw_affiliation_string | Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[18].institutions[0].id | https://openalex.org/I79576946 |
| authorships[18].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[18].institutions[0].type | education |
| authorships[18].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[18].institutions[0].country_code | US |
| authorships[18].institutions[0].display_name | University of Pennsylvania |
| authorships[18].author_position | middle |
| authorships[18].raw_author_name | Dheeraj Jalluri |
| authorships[18].is_corresponding | False |
| authorships[18].raw_affiliation_strings | Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[19].author.id | https://openalex.org/A5103144344 |
| authorships[19].author.orcid | https://orcid.org/0000-0001-9287-6007 |
| authorships[19].author.display_name | Salma K. Jabbour |
| authorships[19].countries | US |
| authorships[19].affiliations[0].institution_ids | https://openalex.org/I102322142 |
| authorships[19].affiliations[0].raw_affiliation_string | Department of Radiation Oncology, Rutgers University, New Brunswick, New Jersey, USA |
| authorships[19].institutions[0].id | https://openalex.org/I102322142 |
| authorships[19].institutions[0].ror | https://ror.org/05vt9qd57 |
| authorships[19].institutions[0].type | education |
| authorships[19].institutions[0].lineage | https://openalex.org/I102322142 |
| authorships[19].institutions[0].country_code | US |
| authorships[19].institutions[0].display_name | Rutgers, The State University of New Jersey |
| authorships[19].author_position | middle |
| authorships[19].raw_author_name | Salma K. Jabbour |
| authorships[19].is_corresponding | False |
| authorships[19].raw_affiliation_strings | Department of Radiation Oncology, Rutgers University, New Brunswick, New Jersey, USA |
| authorships[20].author.id | https://openalex.org/A5101405940 |
| authorships[20].author.orcid | https://orcid.org/0000-0002-7283-3090 |
| authorships[20].author.display_name | Sung Kim |
| authorships[20].countries | US |
| authorships[20].affiliations[0].institution_ids | https://openalex.org/I102322142 |
| authorships[20].affiliations[0].raw_affiliation_string | Department of Radiation Oncology, Rutgers University, New Brunswick, New Jersey, USA |
| authorships[20].institutions[0].id | https://openalex.org/I102322142 |
| authorships[20].institutions[0].ror | https://ror.org/05vt9qd57 |
| authorships[20].institutions[0].type | education |
| authorships[20].institutions[0].lineage | https://openalex.org/I102322142 |
| authorships[20].institutions[0].country_code | US |
| authorships[20].institutions[0].display_name | Rutgers, The State University of New Jersey |
| authorships[20].author_position | middle |
| authorships[20].raw_author_name | Sung Kim |
| authorships[20].is_corresponding | False |
| authorships[20].raw_affiliation_strings | Department of Radiation Oncology, Rutgers University, New Brunswick, New Jersey, USA |
| authorships[21].author.id | https://openalex.org/A5075757580 |
| authorships[21].author.orcid | https://orcid.org/0000-0001-5636-520X |
| authorships[21].author.display_name | Meral Reyhan |
| authorships[21].countries | US |
| authorships[21].affiliations[0].institution_ids | https://openalex.org/I102322142 |
| authorships[21].affiliations[0].raw_affiliation_string | Department of Radiation Oncology, Rutgers University, New Brunswick, New Jersey, USA |
| authorships[21].institutions[0].id | https://openalex.org/I102322142 |
| authorships[21].institutions[0].ror | https://ror.org/05vt9qd57 |
| authorships[21].institutions[0].type | education |
| authorships[21].institutions[0].lineage | https://openalex.org/I102322142 |
| authorships[21].institutions[0].country_code | US |
| authorships[21].institutions[0].display_name | Rutgers, The State University of New Jersey |
| authorships[21].author_position | middle |
| authorships[21].raw_author_name | Meral Reyhan |
| authorships[21].is_corresponding | False |
| authorships[21].raw_affiliation_strings | Department of Radiation Oncology, Rutgers University, New Brunswick, New Jersey, USA |
| authorships[22].author.id | https://openalex.org/A5083473334 |
| authorships[22].author.orcid | https://orcid.org/0000-0002-1399-9904 |
| authorships[22].author.display_name | Clifford G. Robinson |
| authorships[22].countries | US |
| authorships[22].affiliations[0].institution_ids | https://openalex.org/I204465549 |
| authorships[22].affiliations[0].raw_affiliation_string | Department of Radiation Oncology, Washington University, St. Louis, Missouri, USA |
| authorships[22].institutions[0].id | https://openalex.org/I204465549 |
| authorships[22].institutions[0].ror | https://ror.org/01yc7t268 |
| authorships[22].institutions[0].type | education |
| authorships[22].institutions[0].lineage | https://openalex.org/I204465549 |
| authorships[22].institutions[0].country_code | US |
| authorships[22].institutions[0].display_name | Washington University in St. Louis |
| authorships[22].author_position | middle |
| authorships[22].raw_author_name | Clifford G. Robinson |
| authorships[22].is_corresponding | False |
| authorships[22].raw_affiliation_strings | Department of Radiation Oncology, Washington University, St. Louis, Missouri, USA |
| authorships[23].author.id | https://openalex.org/A5072448404 |
| authorships[23].author.orcid | https://orcid.org/0000-0002-2757-0543 |
| authorships[23].author.display_name | Wade L. Thorstad |
| authorships[23].countries | US |
| authorships[23].affiliations[0].institution_ids | https://openalex.org/I204465549 |
| authorships[23].affiliations[0].raw_affiliation_string | Department of Radiation Oncology, Washington University, St. Louis, Missouri, USA |
| authorships[23].institutions[0].id | https://openalex.org/I204465549 |
| authorships[23].institutions[0].ror | https://ror.org/01yc7t268 |
| authorships[23].institutions[0].type | education |
| authorships[23].institutions[0].lineage | https://openalex.org/I204465549 |
| authorships[23].institutions[0].country_code | US |
| authorships[23].institutions[0].display_name | Washington University in St. Louis |
| authorships[23].author_position | middle |
| authorships[23].raw_author_name | Wade L. Thorstad |
| authorships[23].is_corresponding | False |
| authorships[23].raw_affiliation_strings | Department of Radiation Oncology, Washington University, St. Louis, Missouri, USA |
| authorships[24].author.id | https://openalex.org/A5113090976 |
| authorships[24].author.orcid | |
| authorships[24].author.display_name | Jehee Isabelle Choi |
| authorships[24].countries | US |
| authorships[24].affiliations[0].institution_ids | https://openalex.org/I4210107408 |
| authorships[24].affiliations[0].raw_affiliation_string | New York Proton Center, New York, New York, USA |
| authorships[24].institutions[0].id | https://openalex.org/I4210107408 |
| authorships[24].institutions[0].ror | https://ror.org/01m7v2988 |
| authorships[24].institutions[0].type | facility |
| authorships[24].institutions[0].lineage | https://openalex.org/I4210107408 |
| authorships[24].institutions[0].country_code | US |
| authorships[24].institutions[0].display_name | New York Proton Center |
| authorships[24].author_position | middle |
| authorships[24].raw_author_name | Jehee Isabelle Choi |
| authorships[24].is_corresponding | False |
| authorships[24].raw_affiliation_strings | New York Proton Center, New York, New York, USA |
| authorships[25].author.id | https://openalex.org/A5009839688 |
| authorships[25].author.orcid | https://orcid.org/0000-0002-3297-3945 |
| authorships[25].author.display_name | Robert H. Press |
| authorships[25].countries | US |
| authorships[25].affiliations[0].institution_ids | https://openalex.org/I4210107408 |
| authorships[25].affiliations[0].raw_affiliation_string | New York Proton Center, New York, New York, USA |
| authorships[25].institutions[0].id | https://openalex.org/I4210107408 |
| authorships[25].institutions[0].ror | https://ror.org/01m7v2988 |
| authorships[25].institutions[0].type | facility |
| authorships[25].institutions[0].lineage | https://openalex.org/I4210107408 |
| authorships[25].institutions[0].country_code | US |
| authorships[25].institutions[0].display_name | New York Proton Center |
| authorships[25].author_position | middle |
| authorships[25].raw_author_name | Robert Press |
| authorships[25].is_corresponding | False |
| authorships[25].raw_affiliation_strings | New York Proton Center, New York, New York, USA |
| authorships[26].author.id | https://openalex.org/A5067536094 |
| authorships[26].author.orcid | https://orcid.org/0000-0002-0867-3694 |
| authorships[26].author.display_name | Charles B. Simone |
| authorships[26].countries | US |
| authorships[26].affiliations[0].institution_ids | https://openalex.org/I4210107408 |
| authorships[26].affiliations[0].raw_affiliation_string | New York Proton Center, New York, New York, USA |
| authorships[26].institutions[0].id | https://openalex.org/I4210107408 |
| authorships[26].institutions[0].ror | https://ror.org/01m7v2988 |
| authorships[26].institutions[0].type | facility |
| authorships[26].institutions[0].lineage | https://openalex.org/I4210107408 |
| authorships[26].institutions[0].country_code | US |
| authorships[26].institutions[0].display_name | New York Proton Center |
| authorships[26].author_position | middle |
| authorships[26].raw_author_name | Charles B. Simone |
| authorships[26].is_corresponding | False |
| authorships[26].raw_affiliation_strings | New York Proton Center, New York, New York, USA |
| authorships[27].author.id | https://openalex.org/A5033308936 |
| authorships[27].author.orcid | |
| authorships[27].author.display_name | Joe Camaratta |
| authorships[27].affiliations[0].raw_affiliation_string | Quantitative Radiology Solutions, Philadelphia, Pennsylvania, USA |
| authorships[27].author_position | middle |
| authorships[27].raw_author_name | Joe Camaratta |
| authorships[27].is_corresponding | False |
| authorships[27].raw_affiliation_strings | Quantitative Radiology Solutions, Philadelphia, Pennsylvania, USA |
| authorships[28].author.id | https://openalex.org/A5032112612 |
| authorships[28].author.orcid | |
| authorships[28].author.display_name | Steve Owens |
| authorships[28].affiliations[0].raw_affiliation_string | Quantitative Radiology Solutions, Philadelphia, Pennsylvania, USA |
| authorships[28].author_position | middle |
| authorships[28].raw_author_name | Steve Owens |
| authorships[28].is_corresponding | False |
| authorships[28].raw_affiliation_strings | Quantitative Radiology Solutions, Philadelphia, Pennsylvania, USA |
| authorships[29].author.id | https://openalex.org/A5080030813 |
| authorships[29].author.orcid | https://orcid.org/0000-0001-8999-9735 |
| authorships[29].author.display_name | Drew A. Torigian |
| authorships[29].countries | US |
| authorships[29].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[29].affiliations[0].raw_affiliation_string | Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| authorships[29].institutions[0].id | https://openalex.org/I79576946 |
| authorships[29].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[29].institutions[0].type | education |
| authorships[29].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[29].institutions[0].country_code | US |
| authorships[29].institutions[0].display_name | University of Pennsylvania |
| authorships[29].author_position | last |
| authorships[29].raw_author_name | Drew A. Torigian |
| authorships[29].is_corresponding | False |
| authorships[29].raw_affiliation_strings | Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mp.15854 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Combining natural and artificial intelligence for robust automatic anatomy segmentation: Application in neck and thorax auto‐contouring |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14510 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Medical Imaging and Analysis |
| related_works | https://openalex.org/W3104750253, https://openalex.org/W3021239166, https://openalex.org/W2586273397, https://openalex.org/W2390936256, https://openalex.org/W2483429559, https://openalex.org/W2016385589, https://openalex.org/W2009559548, https://openalex.org/W4366341510, https://openalex.org/W2906397153, https://openalex.org/W2385445039 |
| cited_by_count | 27 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 10 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 8 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 8 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1002/mp.15854 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S95522064 |
| best_oa_location.source.issn | 0094-2405, 1522-8541, 2473-4209 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0094-2405 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Medical Physics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mp.15854 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Medical Physics |
| best_oa_location.landing_page_url | https://doi.org/10.1002/mp.15854 |
| primary_location.id | doi:10.1002/mp.15854 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S95522064 |
| primary_location.source.issn | 0094-2405, 1522-8541, 2473-4209 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0094-2405 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Medical Physics |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mp.15854 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Medical Physics |
| primary_location.landing_page_url | https://doi.org/10.1002/mp.15854 |
| publication_date | 2022-07-14 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2115235609, https://openalex.org/W2013284520, https://openalex.org/W1993850931, https://openalex.org/W2104095591, https://openalex.org/W2114487471, https://openalex.org/W2132603077, https://openalex.org/W2015513598, https://openalex.org/W2149184914, https://openalex.org/W2113622874, https://openalex.org/W2025564919, https://openalex.org/W2145803225, https://openalex.org/W2143516773, https://openalex.org/W2118386984, https://openalex.org/W2588062088, https://openalex.org/W2770706469, https://openalex.org/W2603667993, https://openalex.org/W2148107745, https://openalex.org/W2038952578, https://openalex.org/W2059894202, https://openalex.org/W1563961677, https://openalex.org/W2153798798, https://openalex.org/W2097137218, https://openalex.org/W2107770500, https://openalex.org/W1964162596, https://openalex.org/W2963535787, https://openalex.org/W1975111110, https://openalex.org/W2069456254, https://openalex.org/W2083099567, https://openalex.org/W2118924626, https://openalex.org/W2044776246, https://openalex.org/W2046622279, https://openalex.org/W2085091083, https://openalex.org/W2590099728, https://openalex.org/W2962900979, https://openalex.org/W2344858100, https://openalex.org/W2332066482, https://openalex.org/W2589644515, https://openalex.org/W2773960327, https://openalex.org/W3074741277, https://openalex.org/W3082577495, https://openalex.org/W3011583474, https://openalex.org/W2914733968, https://openalex.org/W2225435795, https://openalex.org/W2282928421, https://openalex.org/W3025670151, https://openalex.org/W2333768478, https://openalex.org/W2075358081, https://openalex.org/W2110161289, https://openalex.org/W2065698093, https://openalex.org/W2084755508, https://openalex.org/W2592605422, https://openalex.org/W2790270334, https://openalex.org/W2771252144, https://openalex.org/W2585890928, https://openalex.org/W2921437640, https://openalex.org/W2936801852, https://openalex.org/W2912564039, https://openalex.org/W3003558126, https://openalex.org/W3024992050, https://openalex.org/W3204614423, https://openalex.org/W4289489408, https://openalex.org/W2978708129, https://openalex.org/W2900677237, https://openalex.org/W2962818306, https://openalex.org/W3034739178, https://openalex.org/W2979472178, https://openalex.org/W3008512199, https://openalex.org/W2755147576, https://openalex.org/W2946637494, https://openalex.org/W2973689684, https://openalex.org/W3134696414, https://openalex.org/W2909481502, https://openalex.org/W2901559346, https://openalex.org/W3035647949, https://openalex.org/W2883514733, https://openalex.org/W2763160469, https://openalex.org/W2732931556, https://openalex.org/W3035127651, https://openalex.org/W3047920012, https://openalex.org/W3012401539, https://openalex.org/W2963857746, https://openalex.org/W2955058313, https://openalex.org/W2891511539, https://openalex.org/W3034885317, https://openalex.org/W2884561390, https://openalex.org/W2988804050, https://openalex.org/W2593013519, https://openalex.org/W3113231417, https://openalex.org/W2112884386, https://openalex.org/W2194775991, https://openalex.org/W3104258355, https://openalex.org/W3104390926, https://openalex.org/W4285390037, https://openalex.org/W4403654787, https://openalex.org/W3048802707, https://openalex.org/W3134475970, https://openalex.org/W3045695385, https://openalex.org/W2975885948, https://openalex.org/W2618872230 |
| referenced_works_count | 99 |
| abstract_inverted_index.4 | 288 |
| abstract_inverted_index.a | 63, 111, 115, 141, 162, 252, 373, 395, 403 |
| abstract_inverted_index.26 | 235 |
| abstract_inverted_index.2D | 165 |
| abstract_inverted_index.3D | 5 |
| abstract_inverted_index.AI | 51, 76, 213 |
| abstract_inverted_index.CT | 81, 244 |
| abstract_inverted_index.DC | 397 |
| abstract_inverted_index.DL | 138 |
| abstract_inverted_index.HD | 405 |
| abstract_inverted_index.HI | 226, 230, 327, 388, 392, 452 |
| abstract_inverted_index.In | 300 |
| abstract_inverted_index.It | 416, 472 |
| abstract_inverted_index.MM | 205 |
| abstract_inverted_index.NI | 74, 210, 476 |
| abstract_inverted_index.RT | 256, 289, 340 |
| abstract_inverted_index.We | 61 |
| abstract_inverted_index.an | 344, 459 |
| abstract_inverted_index.as | 312, 351 |
| abstract_inverted_index.at | 337 |
| abstract_inverted_index.be | 43 |
| abstract_inverted_index.by | 45, 186, 190, 204, 325, 342, 379, 386 |
| abstract_inverted_index.in | 7, 29, 80, 86, 133, 237, 251, 270, 334, 384, 421, 462, 464 |
| abstract_inverted_index.is | 11, 454 |
| abstract_inverted_index.mm | 410 |
| abstract_inverted_index.of | 4, 56, 73, 89, 158, 164, 182, 275, 306, 349, 355, 398, 406, 427, 492, 501 |
| abstract_inverted_index.on | 17, 234, 243, 295 |
| abstract_inverted_index.or | 320 |
| abstract_inverted_index.to | 36, 114, 206, 331, 441, 456, 474, 485 |
| abstract_inverted_index.(i) | 104 |
| abstract_inverted_index.(v) | 193 |
| abstract_inverted_index.104 | 281 |
| abstract_inverted_index.110 | 283 |
| abstract_inverted_index.125 | 266 |
| abstract_inverted_index.464 | 249 |
| abstract_inverted_index.70% | 426 |
| abstract_inverted_index.83% | 305 |
| abstract_inverted_index.BBs | 188 |
| abstract_inverted_index.The | 99, 229, 322, 451 |
| abstract_inverted_index.and | 21, 39, 75, 83, 139, 160, 192, 217, 219, 239, 282, 297, 364, 377, 400, 402, 408, 413, 423, 446, 495 |
| abstract_inverted_index.are | 27 |
| abstract_inverted_index.but | 468 |
| abstract_inverted_index.can | 42 |
| abstract_inverted_index.for | 77, 145, 169, 273, 293, 411, 443, 488, 497 |
| abstract_inverted_index.had | 309 |
| abstract_inverted_index.not | 483 |
| abstract_inverted_index.one | 261 |
| abstract_inverted_index.set | 348 |
| abstract_inverted_index.the | 70, 87, 134, 154, 178, 187, 199, 225, 276, 287, 301, 307, 326, 338, 387, 391, 465, 489, 493, 498, 502 |
| abstract_inverted_index.two | 277 |
| abstract_inverted_index.use | 475 |
| abstract_inverted_index.via | 53, 94, 360, 372 |
| abstract_inverted_index.was | 232 |
| abstract_inverted_index.(AI) | 20 |
| abstract_inverted_index.(CT) | 10 |
| abstract_inverted_index.(DC) | 363 |
| abstract_inverted_index.(DL) | 25 |
| abstract_inverted_index.(HI) | 66 |
| abstract_inverted_index.(NI) | 49 |
| abstract_inverted_index.(RT) | 92 |
| abstract_inverted_index.(i), | 215 |
| abstract_inverted_index.(ii) | 121 |
| abstract_inverted_index.(iv) | 172, 223 |
| abstract_inverted_index.(v), | 218 |
| abstract_inverted_index.0.78 | 399 |
| abstract_inverted_index.0.87 | 401 |
| abstract_inverted_index.2.22 | 407 |
| abstract_inverted_index.4.53 | 409 |
| abstract_inverted_index.Data | 258 |
| abstract_inverted_index.Dice | 361 |
| abstract_inverted_index.This | 41 |
| abstract_inverted_index.body | 105, 119, 241, 278 |
| abstract_inverted_index.both | 444 |
| abstract_inverted_index.data | 284, 303 |
| abstract_inverted_index.deep | 23 |
| abstract_inverted_index.each | 146, 170, 183, 208, 274 |
| abstract_inverted_index.five | 102 |
| abstract_inverted_index.four | 255, 339 |
| abstract_inverted_index.from | 211, 214, 222, 248, 260, 286, 439 |
| abstract_inverted_index.help | 477 |
| abstract_inverted_index.into | 50 |
| abstract_inverted_index.like | 458 |
| abstract_inverted_index.mean | 396, 404 |
| abstract_inverted_index.more | 470 |
| abstract_inverted_index.neck | 238, 296, 412 |
| abstract_inverted_index.over | 430 |
| abstract_inverted_index.poor | 315 |
| abstract_inverted_index.sets | 259, 285, 354 |
| abstract_inverted_index.site | 440, 442 |
| abstract_inverted_index.such | 311 |
| abstract_inverted_index.task | 467 |
| abstract_inverted_index.that | 68 |
| abstract_inverted_index.then | 496 |
| abstract_inverted_index.time | 382, 429 |
| abstract_inverted_index.weak | 28 |
| abstract_inverted_index.were | 268, 291, 329, 357 |
| abstract_inverted_index.will | 482 |
| abstract_inverted_index.(BBs) | 168 |
| abstract_inverted_index.(HD), | 368 |
| abstract_inverted_index.(MM), | 175 |
| abstract_inverted_index.(ii), | 212 |
| abstract_inverted_index.(iii) | 148 |
| abstract_inverted_index.Three | 353 |
| abstract_inverted_index.alone | 481 |
| abstract_inverted_index.based | 15 |
| abstract_inverted_index.boxes | 167 |
| abstract_inverted_index.drawn | 333, 448 |
| abstract_inverted_index.first | 487 |
| abstract_inverted_index.fuzzy | 143, 180 |
| abstract_inverted_index.given | 112 |
| abstract_inverted_index.human | 57, 381, 428, 461 |
| abstract_inverted_index.image | 113, 136, 479 |
| abstract_inverted_index.leads | 35 |
| abstract_inverted_index.model | 144, 173, 181 |
| abstract_inverted_index.organ | 78 |
| abstract_inverted_index.saved | 383, 424 |
| abstract_inverted_index.seems | 473 |
| abstract_inverted_index.sets, | 304 |
| abstract_inverted_index.shape | 317 |
| abstract_inverted_index.stack | 163 |
| abstract_inverted_index.study | 253 |
| abstract_inverted_index.their | 220 |
| abstract_inverted_index.time, | 433 |
| abstract_inverted_index.trims | 110 |
| abstract_inverted_index.where | 478 |
| abstract_inverted_index.which | 34, 108, 129, 152, 176, 197 |
| abstract_inverted_index.(iii), | 216 |
| abstract_inverted_index.behave | 457 |
| abstract_inverted_index.coarse | 155 |
| abstract_inverted_index.expert | 460 |
| abstract_inverted_index.guided | 185 |
| abstract_inverted_index.hybrid | 64 |
| abstract_inverted_index.images | 82, 245, 308 |
| abstract_inverted_index.mainly | 16 |
| abstract_inverted_index.models | 55 |
| abstract_inverted_index.object | 126, 131, 184, 200, 494 |
| abstract_inverted_index.organs | 236 |
| abstract_inverted_index.output | 189, 324 |
| abstract_inverted_index.reader | 375 |
| abstract_inverted_index.region | 106 |
| abstract_inverted_index.scores | 436 |
| abstract_inverted_index.streak | 313 |
| abstract_inverted_index.study, | 376 |
| abstract_inverted_index.system | 100, 231, 328, 393, 453 |
| abstract_inverted_index.target | 118 |
| abstract_inverted_index.tested | 233 |
| abstract_inverted_index.thorax | 240 |
| abstract_inverted_index.varied | 437 |
| abstract_inverted_index.vastly | 469 |
| abstract_inverted_index.AAR‐R | 159, 179 |
| abstract_inverted_index.Current | 13 |
| abstract_inverted_index.DL‐R; | 191 |
| abstract_inverted_index.Methods | 98 |
| abstract_inverted_index.Purpose | 60 |
| abstract_inverted_index.Results | 228 |
| abstract_inverted_index.anatomy | 124 |
| abstract_inverted_index.blinded | 374 |
| abstract_inverted_index.centers | 290, 341 |
| abstract_inverted_index.correct | 490 |
| abstract_inverted_index.decide, | 486 |
| abstract_inverted_index.defined | 117 |
| abstract_inverted_index.deforms | 177 |
| abstract_inverted_index.employs | 101, 198 |
| abstract_inverted_index.methods | 52 |
| abstract_inverted_index.natural | 47 |
| abstract_inverted_index.object. | 209 |
| abstract_inverted_index.object; | 147, 171 |
| abstract_inverted_index.objects | 6 |
| abstract_inverted_index.outputs | 140, 161 |
| abstract_inverted_index.overall | 425 |
| abstract_inverted_index.precise | 499 |
| abstract_inverted_index.refines | 153 |
| abstract_inverted_index.region; | 120 |
| abstract_inverted_index.regions | 242 |
| abstract_inverted_index.results | 157 |
| abstract_inverted_index.suffice | 484 |
| abstract_inverted_index.system. | 227, 389 |
| abstract_inverted_index.testing | 294, 302 |
| abstract_inverted_index.therapy | 91 |
| abstract_inverted_index.thorax, | 298, 414 |
| abstract_inverted_index.trimmed | 135 |
| abstract_inverted_index.whereas | 280, 434 |
| abstract_inverted_index.without | 137 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Overall, | 390 |
| abstract_inverted_index.accuracy | 359, 422 |
| abstract_inverted_index.achieved | 394 |
| abstract_inverted_index.anatomic | 32, 58 |
| abstract_inverted_index.approach | 67 |
| abstract_inverted_index.boundary | 366 |
| abstract_inverted_index.bounding | 166 |
| abstract_inverted_index.building | 272 |
| abstract_inverted_index.centers. | 257 |
| abstract_inverted_index.clinical | 96, 335, 370, 419, 431 |
| abstract_inverted_index.compared | 330 |
| abstract_inverted_index.computed | 8 |
| abstract_inverted_index.contours | 323, 332, 350 |
| abstract_inverted_index.distance | 367 |
| abstract_inverted_index.employed | 269 |
| abstract_inverted_index.learning | 24 |
| abstract_inverted_index.measures | 356 |
| abstract_inverted_index.methods, | 14 |
| abstract_inverted_index.modules: | 103 |
| abstract_inverted_index.morphing | 174 |
| abstract_inverted_index.observed | 455 |
| abstract_inverted_index.obtained | 246 |
| abstract_inverted_index.overcome | 44 |
| abstract_inverted_index.patients | 250, 267 |
| abstract_inverted_index.performs | 130 |
| abstract_inverted_index.planning | 93 |
| abstract_inverted_index.practice | 336 |
| abstract_inverted_index.provided | 203 |
| abstract_inverted_index.regions, | 279 |
| abstract_inverted_index.separate | 262 |
| abstract_inverted_index.utilized | 292 |
| abstract_inverted_index.(DL‐D), | 196 |
| abstract_inverted_index.(DL‐R), | 151 |
| abstract_inverted_index.Automatic | 2 |
| abstract_inverted_index.Hausdorff | 365 |
| abstract_inverted_index.automatic | 123 |
| abstract_inverted_index.boundary. | 503 |
| abstract_inverted_index.contours. | 449 |
| abstract_inverted_index.contrast, | 316 |
| abstract_inverted_index.delineate | 207 |
| abstract_inverted_index.employed: | 358 |
| abstract_inverted_index.formulate | 62 |
| abstract_inverted_index.garnering | 30 |
| abstract_inverted_index.implants. | 321 |
| abstract_inverted_index.involving | 254, 265 |
| abstract_inverted_index.localized | 142 |
| abstract_inverted_index.measuring | 380 |
| abstract_inverted_index.multisite | 95 |
| abstract_inverted_index.networks, | 26 |
| abstract_inverted_index.precisely | 116 |
| abstract_inverted_index.radiation | 90 |
| abstract_inverted_index.strengths | 72 |
| abstract_inverted_index.utilizing | 343 |
| abstract_inverted_index.(AAR‐R), | 128 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.DL‐based | 149, 194 |
| abstract_inverted_index.NI‐based | 122 |
| abstract_inverted_index.artifacts, | 314 |
| abstract_inverted_index.artificial | 18 |
| abstract_inverted_index.clinically | 447 |
| abstract_inverted_index.contouring | 385, 420, 432, 466 |
| abstract_inverted_index.efficiency | 38, 378 |
| abstract_inverted_index.facilitate | 224 |
| abstract_inverted_index.illustrate | 84 |
| abstract_inverted_index.integrates | 69 |
| abstract_inverted_index.knowledge. | 59 |
| abstract_inverted_index.pathology, | 319 |
| abstract_inverted_index.reference. | 352 |
| abstract_inverted_index.robustness | 463 |
| abstract_inverted_index.subjective | 369 |
| abstract_inverted_index.tomography | 9 |
| abstract_inverted_index.Conclusions | 450 |
| abstract_inverted_index.application | 88 |
| abstract_inverted_index.coefficient | 362 |
| abstract_inverted_index.combination | 221 |
| abstract_inverted_index.compromised | 37 |
| abstract_inverted_index.containment | 201 |
| abstract_inverted_index.delineation | 195, 500 |
| abstract_inverted_index.distortion, | 318 |
| abstract_inverted_index.established | 346 |
| abstract_inverted_index.evaluation. | 97 |
| abstract_inverted_index.independent | 263 |
| abstract_inverted_index.information | 202, 480 |
| abstract_inverted_index.institution | 264 |
| abstract_inverted_index.limitations | 310 |
| abstract_inverted_index.performance | 85 |
| abstract_inverted_index.recognition | 125, 127, 132, 150, 156 |
| abstract_inverted_index.robustness. | 40 |
| abstract_inverted_index.challenging. | 12 |
| abstract_inverted_index.efficiently. | 471 |
| abstract_inverted_index.high‐level | 31 |
| abstract_inverted_index.information, | 33 |
| abstract_inverted_index.intelligence | 19, 48, 65 |
| abstract_inverted_index.localization | 491 |
| abstract_inverted_index.outperformed | 418 |
| abstract_inverted_index.recognition, | 107 |
| abstract_inverted_index.segmentation | 3, 79 |
| abstract_inverted_index.acceptability | 371, 435 |
| abstract_inverted_index.automatically | 109 |
| abstract_inverted_index.complementary | 71 |
| abstract_inverted_index.computational | 54 |
| abstract_inverted_index.incorporating | 46 |
| abstract_inverted_index.independently | 345 |
| abstract_inverted_index.prospectively | 247 |
| abstract_inverted_index.respectively. | 299, 415 |
| abstract_inverted_index.significantly | 417, 438 |
| abstract_inverted_index.end‐to‐end | 22 |
| abstract_inverted_index.ground‐truth | 347 |
| abstract_inverted_index.training/model | 271 |
| abstract_inverted_index.auto‐contours | 445 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5065713856 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 30 |
| corresponding_institution_ids | https://openalex.org/I79576946 |
| citation_normalized_percentile.value | 0.88091239 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |