Combining Postural Sway Parameters and Machine Learning to Assess Biomechanical Risk Associated with Load-Lifting Activities Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/diagnostics15010105
Background/Objectives: Long-term work-related musculoskeletal disorders are predominantly influenced by factors such as the duration, intensity, and repetitive nature of load lifting. Although traditional ergonomic assessment tools can be effective, they are often challenging and complex to apply due to the absence of a streamlined, standardized framework. Recently, integrating wearable sensors with artificial intelligence has emerged as a promising approach to effectively monitor and mitigate biomechanical risks. This study aimed to evaluate the potential of machine learning models, trained on postural sway metrics derived from an inertial measurement unit (IMU) placed at the lumbar region, to classify risk levels associated with load lifting based on the Revised NIOSH Lifting Equation. Methods: To compute postural sway parameters, the IMU captured acceleration data in both anteroposterior and mediolateral directions, aligning closely with the body’s center of mass. Eight participants undertook two scenarios, each involving twenty consecutive lifting tasks. Eight machine learning classifiers were tested utilizing two validation strategies, with the Gradient Boost Tree algorithm achieving the highest accuracy and an Area under the ROC Curve of 91.2% and 94.5%, respectively. Additionally, feature importance analysis was conducted to identify the most influential sway parameters and directions. Results: The results indicate that the combination of sway metrics and the Gradient Boost model offers a feasible approach for predicting biomechanical risks in load lifting. Conclusions: Further studies with a broader participant pool and varied lifting conditions could enhance the applicability of this method in occupational ergonomics.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/diagnostics15010105
- https://www.mdpi.com/2075-4418/15/1/105/pdf?version=1735969873
- OA Status
- gold
- References
- 58
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406104747
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406104747Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/diagnostics15010105Digital Object Identifier
- Title
-
Combining Postural Sway Parameters and Machine Learning to Assess Biomechanical Risk Associated with Load-Lifting ActivitiesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-04Full publication date if available
- Authors
-
G. Prisco, Maria Agnese Pirozzi, Antonella Santone, Mario Cesarelli, Fabrizio Esposito, Paolo Gargiulo, Francesco Amato, Leandro DonisiList of authors in order
- Landing page
-
https://doi.org/10.3390/diagnostics15010105Publisher landing page
- PDF URL
-
https://www.mdpi.com/2075-4418/15/1/105/pdf?version=1735969873Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2075-4418/15/1/105/pdf?version=1735969873Direct OA link when available
- Concepts
-
Inertial measurement unit, Machine learning, Computer science, Wearable computer, Artificial intelligence, Work (physics), Units of measurement, Physical medicine and rehabilitation, Simulation, Engineering, Medicine, Quantum mechanics, Physics, Mechanical engineering, Embedded systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
58Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406104747 |
|---|---|
| doi | https://doi.org/10.3390/diagnostics15010105 |
| ids.doi | https://doi.org/10.3390/diagnostics15010105 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39795633 |
| ids.openalex | https://openalex.org/W4406104747 |
| fwci | 0.0 |
| type | article |
| title | Combining Postural Sway Parameters and Machine Learning to Assess Biomechanical Risk Associated with Load-Lifting Activities |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 105 |
| biblio.first_page | 105 |
| topics[0].id | https://openalex.org/T10084 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2736 |
| topics[0].subfield.display_name | Pharmacology |
| topics[0].display_name | Musculoskeletal pain and rehabilitation |
| topics[1].id | https://openalex.org/T12006 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.9977999925613403 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3207 |
| topics[1].subfield.display_name | Social Psychology |
| topics[1].display_name | Ergonomics and Musculoskeletal Disorders |
| topics[2].id | https://openalex.org/T10114 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.983299970626831 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3612 |
| topics[2].subfield.display_name | Physical Therapy, Sports Therapy and Rehabilitation |
| topics[2].display_name | Balance, Gait, and Falls Prevention |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C79061980 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6705752015113831 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q941680 |
| concepts[0].display_name | Inertial measurement unit |
| concepts[1].id | https://openalex.org/C119857082 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5236101746559143 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[1].display_name | Machine learning |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5145158767700195 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C150594956 |
| concepts[3].level | 2 |
| concepts[3].score | 0.507777750492096 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1334829 |
| concepts[3].display_name | Wearable computer |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5050533413887024 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C18762648 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4963753819465637 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q42213 |
| concepts[5].display_name | Work (physics) |
| concepts[6].id | https://openalex.org/C151233233 |
| concepts[6].level | 2 |
| concepts[6].score | 0.44165679812431335 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q47574 |
| concepts[6].display_name | Units of measurement |
| concepts[7].id | https://openalex.org/C99508421 |
| concepts[7].level | 1 |
| concepts[7].score | 0.44001898169517517 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2678675 |
| concepts[7].display_name | Physical medicine and rehabilitation |
| concepts[8].id | https://openalex.org/C44154836 |
| concepts[8].level | 1 |
| concepts[8].score | 0.37851855158805847 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q45045 |
| concepts[8].display_name | Simulation |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.24796876311302185 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C71924100 |
| concepts[10].level | 0 |
| concepts[10].score | 0.10752847790718079 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[10].display_name | Medicine |
| concepts[11].id | https://openalex.org/C62520636 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[11].display_name | Quantum mechanics |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C78519656 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[13].display_name | Mechanical engineering |
| concepts[14].id | https://openalex.org/C149635348 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[14].display_name | Embedded system |
| keywords[0].id | https://openalex.org/keywords/inertial-measurement-unit |
| keywords[0].score | 0.6705752015113831 |
| keywords[0].display_name | Inertial measurement unit |
| keywords[1].id | https://openalex.org/keywords/machine-learning |
| keywords[1].score | 0.5236101746559143 |
| keywords[1].display_name | Machine learning |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5145158767700195 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/wearable-computer |
| keywords[3].score | 0.507777750492096 |
| keywords[3].display_name | Wearable computer |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5050533413887024 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/work |
| keywords[5].score | 0.4963753819465637 |
| keywords[5].display_name | Work (physics) |
| keywords[6].id | https://openalex.org/keywords/units-of-measurement |
| keywords[6].score | 0.44165679812431335 |
| keywords[6].display_name | Units of measurement |
| keywords[7].id | https://openalex.org/keywords/physical-medicine-and-rehabilitation |
| keywords[7].score | 0.44001898169517517 |
| keywords[7].display_name | Physical medicine and rehabilitation |
| keywords[8].id | https://openalex.org/keywords/simulation |
| keywords[8].score | 0.37851855158805847 |
| keywords[8].display_name | Simulation |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.24796876311302185 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/medicine |
| keywords[10].score | 0.10752847790718079 |
| keywords[10].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.3390/diagnostics15010105 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172076 |
| locations[0].source.issn | 2075-4418 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2075-4418 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Diagnostics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2075-4418/15/1/105/pdf?version=1735969873 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Diagnostics |
| locations[0].landing_page_url | https://doi.org/10.3390/diagnostics15010105 |
| locations[1].id | pmid:39795633 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Diagnostics (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39795633 |
| locations[2].id | pmh:oai:doaj.org/article:16f82ba2da2848de89f222542ef9d68c |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Diagnostics, Vol 15, Iss 1, p 105 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/16f82ba2da2848de89f222542ef9d68c |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11720042 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Diagnostics (Basel) |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11720042 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5029178787 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-1981-5843 |
| authorships[0].author.display_name | G. Prisco |
| authorships[0].countries | IT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I129627893 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy |
| authorships[0].institutions[0].id | https://openalex.org/I129627893 |
| authorships[0].institutions[0].ror | https://ror.org/04z08z627 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I129627893 |
| authorships[0].institutions[0].country_code | IT |
| authorships[0].institutions[0].display_name | University of Molise |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Giuseppe Prisco |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy |
| authorships[1].author.id | https://openalex.org/A5050828149 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4632-3513 |
| authorships[1].author.display_name | Maria Agnese Pirozzi |
| authorships[1].countries | IT |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I197809005 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy |
| authorships[1].institutions[0].id | https://openalex.org/I197809005 |
| authorships[1].institutions[0].ror | https://ror.org/02kqnpp86 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I197809005 |
| authorships[1].institutions[0].country_code | IT |
| authorships[1].institutions[0].display_name | University of Campania "Luigi Vanvitelli" |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Maria Agnese Pirozzi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy |
| authorships[2].author.id | https://openalex.org/A5108330402 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Antonella Santone |
| authorships[2].countries | IT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I129627893 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy |
| authorships[2].institutions[0].id | https://openalex.org/I129627893 |
| authorships[2].institutions[0].ror | https://ror.org/04z08z627 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I129627893 |
| authorships[2].institutions[0].country_code | IT |
| authorships[2].institutions[0].display_name | University of Molise |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Antonella Santone |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy |
| authorships[3].author.id | https://openalex.org/A5082714564 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9068-313X |
| authorships[3].author.display_name | Mario Cesarelli |
| authorships[3].countries | IT |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I16337185 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Engineering, University of Sannio, 82100 Benevento, Italy |
| authorships[3].institutions[0].id | https://openalex.org/I16337185 |
| authorships[3].institutions[0].ror | https://ror.org/04vc81p87 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I16337185 |
| authorships[3].institutions[0].country_code | IT |
| authorships[3].institutions[0].display_name | University of Sannio |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mario Cesarelli |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Engineering, University of Sannio, 82100 Benevento, Italy |
| authorships[4].author.id | https://openalex.org/A5053703383 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5099-9786 |
| authorships[4].author.display_name | Fabrizio Esposito |
| authorships[4].countries | IT |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I197809005 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy |
| authorships[4].institutions[0].id | https://openalex.org/I197809005 |
| authorships[4].institutions[0].ror | https://ror.org/02kqnpp86 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I197809005 |
| authorships[4].institutions[0].country_code | IT |
| authorships[4].institutions[0].display_name | University of Campania "Luigi Vanvitelli" |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Fabrizio Esposito |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy |
| authorships[5].author.id | https://openalex.org/A5078492622 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5049-4817 |
| authorships[5].author.display_name | Paolo Gargiulo |
| authorships[5].countries | IS |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I123185442 |
| authorships[5].affiliations[0].raw_affiliation_string | Institute of Biomedical and Neural Engineering, Reykjavik University, 102 Reykjavik, Iceland |
| authorships[5].institutions[0].id | https://openalex.org/I123185442 |
| authorships[5].institutions[0].ror | https://ror.org/05d2kyx68 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I123185442 |
| authorships[5].institutions[0].country_code | IS |
| authorships[5].institutions[0].display_name | Reykjavík University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Paolo Gargiulo |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Institute of Biomedical and Neural Engineering, Reykjavik University, 102 Reykjavik, Iceland |
| authorships[6].author.id | https://openalex.org/A5030101234 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9053-3139 |
| authorships[6].author.display_name | Francesco Amato |
| authorships[6].countries | IT |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I71267560 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Information Technology and Electrical Engineering, University of Naples Federico II, 80125 Naples, Italy |
| authorships[6].institutions[0].id | https://openalex.org/I71267560 |
| authorships[6].institutions[0].ror | https://ror.org/05290cv24 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I71267560 |
| authorships[6].institutions[0].country_code | IT |
| authorships[6].institutions[0].display_name | University of Naples Federico II |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Francesco Amato |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Information Technology and Electrical Engineering, University of Naples Federico II, 80125 Naples, Italy |
| authorships[7].author.id | https://openalex.org/A5044617873 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-9746-2265 |
| authorships[7].author.display_name | Leandro Donisi |
| authorships[7].countries | IT |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I197809005 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy |
| authorships[7].institutions[0].id | https://openalex.org/I197809005 |
| authorships[7].institutions[0].ror | https://ror.org/02kqnpp86 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I197809005 |
| authorships[7].institutions[0].country_code | IT |
| authorships[7].institutions[0].display_name | University of Campania "Luigi Vanvitelli" |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Leandro Donisi |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2075-4418/15/1/105/pdf?version=1735969873 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Combining Postural Sway Parameters and Machine Learning to Assess Biomechanical Risk Associated with Load-Lifting Activities |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10084 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2736 |
| primary_topic.subfield.display_name | Pharmacology |
| primary_topic.display_name | Musculoskeletal pain and rehabilitation |
| related_works | https://openalex.org/W1967422967, https://openalex.org/W2029881158, https://openalex.org/W3196140453, https://openalex.org/W4244061106, https://openalex.org/W3044242125, https://openalex.org/W2978426962, https://openalex.org/W2768468910, https://openalex.org/W2037990170, https://openalex.org/W2999148748, https://openalex.org/W2092597637 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/diagnostics15010105 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172076 |
| best_oa_location.source.issn | 2075-4418 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2075-4418 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Diagnostics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2075-4418/15/1/105/pdf?version=1735969873 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Diagnostics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/diagnostics15010105 |
| primary_location.id | doi:10.3390/diagnostics15010105 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172076 |
| primary_location.source.issn | 2075-4418 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2075-4418 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Diagnostics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2075-4418/15/1/105/pdf?version=1735969873 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Diagnostics |
| primary_location.landing_page_url | https://doi.org/10.3390/diagnostics15010105 |
| publication_date | 2025-01-04 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2000437662, https://openalex.org/W2082219790, https://openalex.org/W3032665511, https://openalex.org/W2161950285, https://openalex.org/W2092687223, https://openalex.org/W2008076986, https://openalex.org/W2024097232, https://openalex.org/W2033663068, https://openalex.org/W2125017772, https://openalex.org/W2041757785, https://openalex.org/W2096212303, https://openalex.org/W4249780303, https://openalex.org/W2080381589, https://openalex.org/W1541449646, https://openalex.org/W3108212464, https://openalex.org/W4225706868, https://openalex.org/W4311532909, https://openalex.org/W2520936185, https://openalex.org/W3200771454, https://openalex.org/W2890465160, https://openalex.org/W3121322113, https://openalex.org/W4307946155, https://openalex.org/W3151382510, https://openalex.org/W4392595776, https://openalex.org/W3011358627, https://openalex.org/W2761048929, https://openalex.org/W2588955080, https://openalex.org/W4309224386, https://openalex.org/W3129861863, https://openalex.org/W2029019688, https://openalex.org/W1975648068, https://openalex.org/W2313467330, https://openalex.org/W2742615586, https://openalex.org/W4291019739, https://openalex.org/W2403191188, https://openalex.org/W3094344871, https://openalex.org/W2294661077, https://openalex.org/W2121588663, https://openalex.org/W2987296899, https://openalex.org/W2138554597, https://openalex.org/W2017146961, https://openalex.org/W4244166797, https://openalex.org/W4213102919, https://openalex.org/W2088794999, https://openalex.org/W4243150065, https://openalex.org/W2150757437, https://openalex.org/W6869608176, https://openalex.org/W2088252378, https://openalex.org/W6681822247, https://openalex.org/W2980000166, https://openalex.org/W6697261853, https://openalex.org/W1487321909, https://openalex.org/W2087016914, https://openalex.org/W4392741075, https://openalex.org/W2082893943, https://openalex.org/W4386929116, https://openalex.org/W4391424238, https://openalex.org/W2148489082 |
| referenced_works_count | 58 |
| abstract_inverted_index.a | 42, 56, 208, 222 |
| abstract_inverted_index.To | 110 |
| abstract_inverted_index.an | 84, 166 |
| abstract_inverted_index.as | 11, 55 |
| abstract_inverted_index.at | 90 |
| abstract_inverted_index.be | 27 |
| abstract_inverted_index.by | 8 |
| abstract_inverted_index.in | 120, 215, 237 |
| abstract_inverted_index.of | 18, 41, 73, 132, 172, 199, 234 |
| abstract_inverted_index.on | 78, 103 |
| abstract_inverted_index.to | 35, 38, 59, 69, 94, 183 |
| abstract_inverted_index.IMU | 116 |
| abstract_inverted_index.ROC | 170 |
| abstract_inverted_index.The | 193 |
| abstract_inverted_index.and | 15, 33, 62, 123, 165, 174, 190, 202, 226 |
| abstract_inverted_index.are | 5, 30 |
| abstract_inverted_index.can | 26 |
| abstract_inverted_index.due | 37 |
| abstract_inverted_index.for | 211 |
| abstract_inverted_index.has | 53 |
| abstract_inverted_index.the | 12, 39, 71, 91, 104, 115, 129, 156, 162, 169, 185, 197, 203, 232 |
| abstract_inverted_index.two | 137, 152 |
| abstract_inverted_index.was | 181 |
| abstract_inverted_index.Area | 167 |
| abstract_inverted_index.This | 66 |
| abstract_inverted_index.Tree | 159 |
| abstract_inverted_index.both | 121 |
| abstract_inverted_index.data | 119 |
| abstract_inverted_index.each | 139 |
| abstract_inverted_index.from | 83 |
| abstract_inverted_index.load | 19, 100, 216 |
| abstract_inverted_index.most | 186 |
| abstract_inverted_index.pool | 225 |
| abstract_inverted_index.risk | 96 |
| abstract_inverted_index.such | 10 |
| abstract_inverted_index.sway | 80, 113, 188, 200 |
| abstract_inverted_index.that | 196 |
| abstract_inverted_index.they | 29 |
| abstract_inverted_index.this | 235 |
| abstract_inverted_index.unit | 87 |
| abstract_inverted_index.were | 149 |
| abstract_inverted_index.with | 50, 99, 128, 155, 221 |
| abstract_inverted_index.(IMU) | 88 |
| abstract_inverted_index.91.2% | 173 |
| abstract_inverted_index.Boost | 158, 205 |
| abstract_inverted_index.Curve | 171 |
| abstract_inverted_index.Eight | 134, 145 |
| abstract_inverted_index.NIOSH | 106 |
| abstract_inverted_index.aimed | 68 |
| abstract_inverted_index.apply | 36 |
| abstract_inverted_index.based | 102 |
| abstract_inverted_index.could | 230 |
| abstract_inverted_index.mass. | 133 |
| abstract_inverted_index.model | 206 |
| abstract_inverted_index.often | 31 |
| abstract_inverted_index.risks | 214 |
| abstract_inverted_index.study | 67 |
| abstract_inverted_index.tools | 25 |
| abstract_inverted_index.under | 168 |
| abstract_inverted_index.94.5%, | 175 |
| abstract_inverted_index.center | 131 |
| abstract_inverted_index.levels | 97 |
| abstract_inverted_index.lumbar | 92 |
| abstract_inverted_index.method | 236 |
| abstract_inverted_index.nature | 17 |
| abstract_inverted_index.offers | 207 |
| abstract_inverted_index.placed | 89 |
| abstract_inverted_index.risks. | 65 |
| abstract_inverted_index.tasks. | 144 |
| abstract_inverted_index.tested | 150 |
| abstract_inverted_index.twenty | 141 |
| abstract_inverted_index.varied | 227 |
| abstract_inverted_index.Further | 219 |
| abstract_inverted_index.Lifting | 107 |
| abstract_inverted_index.Revised | 105 |
| abstract_inverted_index.absence | 40 |
| abstract_inverted_index.broader | 223 |
| abstract_inverted_index.closely | 127 |
| abstract_inverted_index.complex | 34 |
| abstract_inverted_index.compute | 111 |
| abstract_inverted_index.derived | 82 |
| abstract_inverted_index.emerged | 54 |
| abstract_inverted_index.enhance | 231 |
| abstract_inverted_index.factors | 9 |
| abstract_inverted_index.feature | 178 |
| abstract_inverted_index.highest | 163 |
| abstract_inverted_index.lifting | 101, 143, 228 |
| abstract_inverted_index.machine | 74, 146 |
| abstract_inverted_index.metrics | 81, 201 |
| abstract_inverted_index.models, | 76 |
| abstract_inverted_index.monitor | 61 |
| abstract_inverted_index.region, | 93 |
| abstract_inverted_index.results | 194 |
| abstract_inverted_index.sensors | 49 |
| abstract_inverted_index.studies | 220 |
| abstract_inverted_index.trained | 77 |
| abstract_inverted_index.Although | 21 |
| abstract_inverted_index.Gradient | 157, 204 |
| abstract_inverted_index.Methods: | 109 |
| abstract_inverted_index.Results: | 192 |
| abstract_inverted_index.accuracy | 164 |
| abstract_inverted_index.aligning | 126 |
| abstract_inverted_index.analysis | 180 |
| abstract_inverted_index.approach | 58, 210 |
| abstract_inverted_index.body’s | 130 |
| abstract_inverted_index.captured | 117 |
| abstract_inverted_index.classify | 95 |
| abstract_inverted_index.evaluate | 70 |
| abstract_inverted_index.feasible | 209 |
| abstract_inverted_index.identify | 184 |
| abstract_inverted_index.indicate | 195 |
| abstract_inverted_index.inertial | 85 |
| abstract_inverted_index.learning | 75, 147 |
| abstract_inverted_index.lifting. | 20, 217 |
| abstract_inverted_index.mitigate | 63 |
| abstract_inverted_index.postural | 79, 112 |
| abstract_inverted_index.wearable | 48 |
| abstract_inverted_index.Equation. | 108 |
| abstract_inverted_index.Long-term | 1 |
| abstract_inverted_index.Recently, | 46 |
| abstract_inverted_index.achieving | 161 |
| abstract_inverted_index.algorithm | 160 |
| abstract_inverted_index.conducted | 182 |
| abstract_inverted_index.disorders | 4 |
| abstract_inverted_index.duration, | 13 |
| abstract_inverted_index.ergonomic | 23 |
| abstract_inverted_index.involving | 140 |
| abstract_inverted_index.potential | 72 |
| abstract_inverted_index.promising | 57 |
| abstract_inverted_index.undertook | 136 |
| abstract_inverted_index.utilizing | 151 |
| abstract_inverted_index.artificial | 51 |
| abstract_inverted_index.assessment | 24 |
| abstract_inverted_index.associated | 98 |
| abstract_inverted_index.conditions | 229 |
| abstract_inverted_index.effective, | 28 |
| abstract_inverted_index.framework. | 45 |
| abstract_inverted_index.importance | 179 |
| abstract_inverted_index.influenced | 7 |
| abstract_inverted_index.intensity, | 14 |
| abstract_inverted_index.parameters | 189 |
| abstract_inverted_index.predicting | 212 |
| abstract_inverted_index.repetitive | 16 |
| abstract_inverted_index.scenarios, | 138 |
| abstract_inverted_index.validation | 153 |
| abstract_inverted_index.challenging | 32 |
| abstract_inverted_index.classifiers | 148 |
| abstract_inverted_index.combination | 198 |
| abstract_inverted_index.consecutive | 142 |
| abstract_inverted_index.directions, | 125 |
| abstract_inverted_index.directions. | 191 |
| abstract_inverted_index.effectively | 60 |
| abstract_inverted_index.ergonomics. | 239 |
| abstract_inverted_index.influential | 187 |
| abstract_inverted_index.integrating | 47 |
| abstract_inverted_index.measurement | 86 |
| abstract_inverted_index.parameters, | 114 |
| abstract_inverted_index.participant | 224 |
| abstract_inverted_index.strategies, | 154 |
| abstract_inverted_index.traditional | 22 |
| abstract_inverted_index.Conclusions: | 218 |
| abstract_inverted_index.acceleration | 118 |
| abstract_inverted_index.intelligence | 52 |
| abstract_inverted_index.mediolateral | 124 |
| abstract_inverted_index.occupational | 238 |
| abstract_inverted_index.participants | 135 |
| abstract_inverted_index.standardized | 44 |
| abstract_inverted_index.streamlined, | 43 |
| abstract_inverted_index.work-related | 2 |
| abstract_inverted_index.Additionally, | 177 |
| abstract_inverted_index.applicability | 233 |
| abstract_inverted_index.biomechanical | 64, 213 |
| abstract_inverted_index.predominantly | 6 |
| abstract_inverted_index.respectively. | 176 |
| abstract_inverted_index.anteroposterior | 122 |
| abstract_inverted_index.musculoskeletal | 3 |
| abstract_inverted_index.Background/Objectives: | 0 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5044617873 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I197809005 |
| citation_normalized_percentile.value | 0.00609739 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |