Comment on nhess-2023-120 Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.5194/nhess-2023-120-rc2
Abstract. The exposure of High Mountain Asia (HMA) to disaster risks is heightened by extreme weather conditions and the impacts of climate change. Obtaining knowledge about the long-term response of the landscape to hydroclimatic variations in HMA is paramount, as millions of people are affected by these changes every year. During monsoons, substantial human suffering, and damage to crops and infrastructure in populated communities result from the flooding and debris flow caused by the increase in precipitation extremes each year. Although a few initiatives have undertaken the estimation of flood risk locally, the use of traditional techniques in ungauged basins is, unfortunately, not always possible because of the lack of extensive data required. To address this problem, we present in this study a geomorphologically guided machine learning (ML) approach for mapping flood impacts across HMA. We defined socioeconomic flood impact using the Lifeyears Index (LYI), a systematic index that measures the economic cost and loss of life caused by flooding. This index quantifies the importance of the destruction to infrastructure, capital, and housing in an overall assessment. We trained the proposed model with over 6000 flood events, from 1980 to 2020, and their computed five-year and ten-year LYIs. We used as predictors, (1) the five-year rainfall concentrations (which correlate the magnitude of precipitation events with the time of occurrence) of events retrieved from ERA5 daily data; (2) a geomorphic classifier (flood geomorphic potential) based on hydraulic scaling functions automatically derived from an 8 and 30-meter digital elevation model (DEM) for the region and (3) population. This model proved capable of identifying the hotspots of flood susceptibility on a national scale and showing its variability from 1980 to 2022. The study also highlights the severity of the impacts of hydroclimatic extremes in the entire HMA region. The framework is generic and can be used to derive a wide variety of flood vulnerability and subsequent risk maps in data-scarce regions.
Related Topics
- Type
- peer-review
- Language
- en
- Landing Page
- https://doi.org/10.5194/nhess-2023-120-rc2
- OA Status
- gold
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391918720
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391918720Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/nhess-2023-120-rc2Digital Object Identifier
- Title
-
Comment on nhess-2023-120Work title
- Type
-
peer-reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-18Full publication date if available
- Authors
-
Mariam Khanam, Giulia Sofia, Wilmalis Rodriguez, Efthymios I. Nikolopoulos, Binghao Lu, Dongjin Song, Emmanouil N. AnagnostouList of authors in order
- Landing page
-
https://doi.org/10.5194/nhess-2023-120-rc2Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5194/nhess-2023-120-rc2Direct OA link when available
- Concepts
-
Environmental scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391918720 |
|---|---|
| doi | https://doi.org/10.5194/nhess-2023-120-rc2 |
| ids.doi | https://doi.org/10.5194/nhess-2023-120-rc2 |
| ids.openalex | https://openalex.org/W4391918720 |
| fwci | |
| type | peer-review |
| title | Comment on nhess-2023-120 |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C39432304 |
| concepts[0].level | 0 |
| concepts[0].score | 0.37639570236206055 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[0].display_name | Environmental science |
| keywords[0].id | https://openalex.org/keywords/environmental-science |
| keywords[0].score | 0.37639570236206055 |
| keywords[0].display_name | Environmental science |
| language | en |
| locations[0].id | doi:10.5194/nhess-2023-120-rc2 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | peer-review |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5194/nhess-2023-120-rc2 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5069708224 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Mariam Khanam |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I140172145 |
| authorships[0].affiliations[0].raw_affiliation_string | Civil & Environmental Engineering, University of Connecticut, Storrs, 06269, USA |
| authorships[0].institutions[0].id | https://openalex.org/I140172145 |
| authorships[0].institutions[0].ror | https://ror.org/02der9h97 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I140172145 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Connecticut |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Khanam, Mariam |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Civil & Environmental Engineering, University of Connecticut, Storrs, 06269, USA |
| authorships[1].author.id | https://openalex.org/A5032209391 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9769-439X |
| authorships[1].author.display_name | Giulia Sofia |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I140172145 |
| authorships[1].affiliations[0].raw_affiliation_string | Civil & Environmental Engineering, University of Connecticut, Storrs, 06269, USA |
| authorships[1].institutions[0].id | https://openalex.org/I140172145 |
| authorships[1].institutions[0].ror | https://ror.org/02der9h97 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I140172145 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Connecticut |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sofia, Giulia |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Civil & Environmental Engineering, University of Connecticut, Storrs, 06269, USA |
| authorships[2].author.id | https://openalex.org/A5083198283 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Wilmalis Rodriguez |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I140172145 |
| authorships[2].affiliations[0].raw_affiliation_string | Civil & Environmental Engineering, University of Connecticut, Storrs, 06269, USA |
| authorships[2].institutions[0].id | https://openalex.org/I140172145 |
| authorships[2].institutions[0].ror | https://ror.org/02der9h97 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I140172145 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Connecticut |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rodriguez, Wilmalis |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Civil & Environmental Engineering, University of Connecticut, Storrs, 06269, USA |
| authorships[3].author.id | https://openalex.org/A5064531227 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5206-1249 |
| authorships[3].author.display_name | Efthymios I. Nikolopoulos |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I102322142 |
| authorships[3].affiliations[0].raw_affiliation_string | Civil & Environmental Engineering, Rutgers University, Piscataway, 08854, USA |
| authorships[3].institutions[0].id | https://openalex.org/I102322142 |
| authorships[3].institutions[0].ror | https://ror.org/05vt9qd57 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I102322142 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Rutgers, The State University of New Jersey |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Nikolopoulos, Efthymios I. |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Civil & Environmental Engineering, Rutgers University, Piscataway, 08854, USA |
| authorships[4].author.id | https://openalex.org/A5101636503 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2701-3261 |
| authorships[4].author.display_name | Binghao Lu |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I140172145 |
| authorships[4].affiliations[0].raw_affiliation_string | Computer Science and Engineering, University of Connecticut, Storrs, 06269, USA |
| authorships[4].institutions[0].id | https://openalex.org/I140172145 |
| authorships[4].institutions[0].ror | https://ror.org/02der9h97 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I140172145 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Connecticut |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Lu, Binghao |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Computer Science and Engineering, University of Connecticut, Storrs, 06269, USA |
| authorships[5].author.id | https://openalex.org/A5013197657 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7027-7916 |
| authorships[5].author.display_name | Dongjin Song |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I140172145 |
| authorships[5].affiliations[0].raw_affiliation_string | Computer Science and Engineering, University of Connecticut, Storrs, 06269, USA |
| authorships[5].institutions[0].id | https://openalex.org/I140172145 |
| authorships[5].institutions[0].ror | https://ror.org/02der9h97 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I140172145 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of Connecticut |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Song, Dongjin |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Computer Science and Engineering, University of Connecticut, Storrs, 06269, USA |
| authorships[6].author.id | https://openalex.org/A5057947877 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1622-0302 |
| authorships[6].author.display_name | Emmanouil N. Anagnostou |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I140172145 |
| authorships[6].affiliations[0].raw_affiliation_string | Civil & Environmental Engineering, University of Connecticut, Storrs, 06269, USA |
| authorships[6].institutions[0].id | https://openalex.org/I140172145 |
| authorships[6].institutions[0].ror | https://ror.org/02der9h97 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I140172145 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | University of Connecticut |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Anagnostou, Emmanouil N. |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Civil & Environmental Engineering, University of Connecticut, Storrs, 06269, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5194/nhess-2023-120-rc2 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-02-19T00:00:00 |
| display_name | Comment on nhess-2023-120 |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic | |
| related_works | https://openalex.org/W3007404728, https://openalex.org/W2374021052, https://openalex.org/W2110536732, https://openalex.org/W3117958761, https://openalex.org/W1984740135, https://openalex.org/W1984514811, https://openalex.org/W4280521631, https://openalex.org/W2094967319, https://openalex.org/W4206359692, https://openalex.org/W3206420609 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5194/nhess-2023-120-rc2 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | peer-review |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5194/nhess-2023-120-rc2 |
| primary_location.id | doi:10.5194/nhess-2023-120-rc2 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | peer-review |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5194/nhess-2023-120-rc2 |
| publication_date | 2024-02-18 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3150589570, https://openalex.org/W2972636092, https://openalex.org/W1999992419, https://openalex.org/W2014647973, https://openalex.org/W2949653345, https://openalex.org/W2903047573, https://openalex.org/W2078589207, https://openalex.org/W2981304459, https://openalex.org/W3006071021, https://openalex.org/W1410033837, https://openalex.org/W2042377003, https://openalex.org/W4293065735, https://openalex.org/W2807072362, https://openalex.org/W2110052832, https://openalex.org/W4225417168, https://openalex.org/W2099218749, https://openalex.org/W2322196288, https://openalex.org/W2163762961, https://openalex.org/W2911656129, https://openalex.org/W1972926342, https://openalex.org/W2885001973, https://openalex.org/W2295598076, https://openalex.org/W4221048067, https://openalex.org/W2121410285, https://openalex.org/W2013065062, https://openalex.org/W2786805770, https://openalex.org/W1975804740, https://openalex.org/W2984226943, https://openalex.org/W2777315428, https://openalex.org/W1988958610, https://openalex.org/W2583015316, https://openalex.org/W3048334049, https://openalex.org/W2237990070 |
| referenced_works_count | 33 |
| abstract_inverted_index.8 | 243 |
| abstract_inverted_index.a | 82, 123, 146, 228, 268, 306 |
| abstract_inverted_index.To | 114 |
| abstract_inverted_index.We | 136, 178, 199 |
| abstract_inverted_index.an | 175, 242 |
| abstract_inverted_index.as | 40, 201 |
| abstract_inverted_index.be | 302 |
| abstract_inverted_index.by | 14, 46, 73, 159 |
| abstract_inverted_index.in | 36, 62, 76, 98, 120, 174, 291, 316 |
| abstract_inverted_index.is | 12, 38, 298 |
| abstract_inverted_index.of | 4, 21, 30, 42, 89, 95, 107, 110, 156, 166, 212, 218, 220, 260, 264, 285, 288, 309 |
| abstract_inverted_index.on | 235, 267 |
| abstract_inverted_index.to | 9, 33, 58, 169, 190, 277, 304 |
| abstract_inverted_index.we | 118 |
| abstract_inverted_index.(1) | 203 |
| abstract_inverted_index.(2) | 227 |
| abstract_inverted_index.(3) | 254 |
| abstract_inverted_index.HMA | 37, 294 |
| abstract_inverted_index.The | 2, 279, 296 |
| abstract_inverted_index.and | 18, 56, 60, 69, 154, 172, 192, 196, 244, 253, 271, 300, 312 |
| abstract_inverted_index.are | 44 |
| abstract_inverted_index.can | 301 |
| abstract_inverted_index.few | 83 |
| abstract_inverted_index.for | 130, 250 |
| abstract_inverted_index.is, | 101 |
| abstract_inverted_index.its | 273 |
| abstract_inverted_index.not | 103 |
| abstract_inverted_index.the | 19, 27, 31, 67, 74, 87, 93, 108, 142, 151, 164, 167, 180, 204, 210, 216, 251, 262, 283, 286, 292 |
| abstract_inverted_index.use | 94 |
| abstract_inverted_index.(ML) | 128 |
| abstract_inverted_index.1980 | 189, 276 |
| abstract_inverted_index.6000 | 185 |
| abstract_inverted_index.Asia | 7 |
| abstract_inverted_index.ERA5 | 224 |
| abstract_inverted_index.HMA. | 135 |
| abstract_inverted_index.High | 5 |
| abstract_inverted_index.This | 161, 256 |
| abstract_inverted_index.also | 281 |
| abstract_inverted_index.cost | 153 |
| abstract_inverted_index.data | 112 |
| abstract_inverted_index.each | 79 |
| abstract_inverted_index.flow | 71 |
| abstract_inverted_index.from | 66, 188, 223, 241, 275 |
| abstract_inverted_index.have | 85 |
| abstract_inverted_index.lack | 109 |
| abstract_inverted_index.life | 157 |
| abstract_inverted_index.loss | 155 |
| abstract_inverted_index.maps | 315 |
| abstract_inverted_index.over | 184 |
| abstract_inverted_index.risk | 91, 314 |
| abstract_inverted_index.that | 149 |
| abstract_inverted_index.this | 116, 121 |
| abstract_inverted_index.time | 217 |
| abstract_inverted_index.used | 200, 303 |
| abstract_inverted_index.wide | 307 |
| abstract_inverted_index.with | 183, 215 |
| abstract_inverted_index.(DEM) | 249 |
| abstract_inverted_index.(HMA) | 8 |
| abstract_inverted_index.2020, | 191 |
| abstract_inverted_index.2022. | 278 |
| abstract_inverted_index.Index | 144 |
| abstract_inverted_index.LYIs. | 198 |
| abstract_inverted_index.about | 26 |
| abstract_inverted_index.based | 234 |
| abstract_inverted_index.crops | 59 |
| abstract_inverted_index.daily | 225 |
| abstract_inverted_index.data; | 226 |
| abstract_inverted_index.every | 49 |
| abstract_inverted_index.flood | 90, 132, 139, 186, 265, 310 |
| abstract_inverted_index.human | 54 |
| abstract_inverted_index.index | 148, 162 |
| abstract_inverted_index.model | 182, 248, 257 |
| abstract_inverted_index.risks | 11 |
| abstract_inverted_index.scale | 270 |
| abstract_inverted_index.study | 122, 280 |
| abstract_inverted_index.their | 193 |
| abstract_inverted_index.these | 47 |
| abstract_inverted_index.using | 141 |
| abstract_inverted_index.year. | 50, 80 |
| abstract_inverted_index.(LYI), | 145 |
| abstract_inverted_index.(flood | 231 |
| abstract_inverted_index.(which | 208 |
| abstract_inverted_index.During | 51 |
| abstract_inverted_index.across | 134 |
| abstract_inverted_index.always | 104 |
| abstract_inverted_index.basins | 100 |
| abstract_inverted_index.caused | 72, 158 |
| abstract_inverted_index.damage | 57 |
| abstract_inverted_index.debris | 70 |
| abstract_inverted_index.derive | 305 |
| abstract_inverted_index.entire | 293 |
| abstract_inverted_index.events | 214, 221 |
| abstract_inverted_index.guided | 125 |
| abstract_inverted_index.impact | 140 |
| abstract_inverted_index.people | 43 |
| abstract_inverted_index.proved | 258 |
| abstract_inverted_index.region | 252 |
| abstract_inverted_index.result | 65 |
| abstract_inverted_index.<strong | 0 |
| abstract_inverted_index.address | 115 |
| abstract_inverted_index.because | 106 |
| abstract_inverted_index.capable | 259 |
| abstract_inverted_index.change. | 23 |
| abstract_inverted_index.changes | 48 |
| abstract_inverted_index.climate | 22 |
| abstract_inverted_index.defined | 137 |
| abstract_inverted_index.derived | 240 |
| abstract_inverted_index.digital | 246 |
| abstract_inverted_index.events, | 187 |
| abstract_inverted_index.extreme | 15 |
| abstract_inverted_index.generic | 299 |
| abstract_inverted_index.housing | 173 |
| abstract_inverted_index.impacts | 20, 133, 287 |
| abstract_inverted_index.machine | 126 |
| abstract_inverted_index.mapping | 131 |
| abstract_inverted_index.overall | 176 |
| abstract_inverted_index.present | 119 |
| abstract_inverted_index.region. | 295 |
| abstract_inverted_index.scaling | 237 |
| abstract_inverted_index.showing | 272 |
| abstract_inverted_index.trained | 179 |
| abstract_inverted_index.variety | 308 |
| abstract_inverted_index.weather | 16 |
| abstract_inverted_index.30-meter | 245 |
| abstract_inverted_index.Although | 81 |
| abstract_inverted_index.Mountain | 6 |
| abstract_inverted_index.affected | 45 |
| abstract_inverted_index.approach | 129 |
| abstract_inverted_index.capital, | 171 |
| abstract_inverted_index.computed | 194 |
| abstract_inverted_index.disaster | 10 |
| abstract_inverted_index.economic | 152 |
| abstract_inverted_index.exposure | 3 |
| abstract_inverted_index.extremes | 78, 290 |
| abstract_inverted_index.flooding | 68 |
| abstract_inverted_index.hotspots | 263 |
| abstract_inverted_index.increase | 75 |
| abstract_inverted_index.learning | 127 |
| abstract_inverted_index.locally, | 92 |
| abstract_inverted_index.measures | 150 |
| abstract_inverted_index.millions | 41 |
| abstract_inverted_index.national | 269 |
| abstract_inverted_index.possible | 105 |
| abstract_inverted_index.problem, | 117 |
| abstract_inverted_index.proposed | 181 |
| abstract_inverted_index.rainfall | 206 |
| abstract_inverted_index.regions. | 318 |
| abstract_inverted_index.response | 29 |
| abstract_inverted_index.severity | 284 |
| abstract_inverted_index.ten-year | 197 |
| abstract_inverted_index.ungauged | 99 |
| abstract_inverted_index.Lifeyears | 143 |
| abstract_inverted_index.Obtaining | 24 |
| abstract_inverted_index.correlate | 209 |
| abstract_inverted_index.elevation | 247 |
| abstract_inverted_index.extensive | 111 |
| abstract_inverted_index.five-year | 195, 205 |
| abstract_inverted_index.flooding. | 160 |
| abstract_inverted_index.framework | 297 |
| abstract_inverted_index.functions | 238 |
| abstract_inverted_index.hydraulic | 236 |
| abstract_inverted_index.knowledge | 25 |
| abstract_inverted_index.landscape | 32 |
| abstract_inverted_index.long-term | 28 |
| abstract_inverted_index.magnitude | 211 |
| abstract_inverted_index.monsoons, | 52 |
| abstract_inverted_index.populated | 63 |
| abstract_inverted_index.required. | 113 |
| abstract_inverted_index.retrieved | 222 |
| abstract_inverted_index.classifier | 230 |
| abstract_inverted_index.conditions | 17 |
| abstract_inverted_index.estimation | 88 |
| abstract_inverted_index.geomorphic | 229, 232 |
| abstract_inverted_index.heightened | 13 |
| abstract_inverted_index.highlights | 282 |
| abstract_inverted_index.importance | 165 |
| abstract_inverted_index.paramount, | 39 |
| abstract_inverted_index.potential) | 233 |
| abstract_inverted_index.quantifies | 163 |
| abstract_inverted_index.subsequent | 313 |
| abstract_inverted_index.suffering, | 55 |
| abstract_inverted_index.systematic | 147 |
| abstract_inverted_index.techniques | 97 |
| abstract_inverted_index.undertaken | 86 |
| abstract_inverted_index.variations | 35 |
| abstract_inverted_index.assessment. | 177 |
| abstract_inverted_index.communities | 64 |
| abstract_inverted_index.data-scarce | 317 |
| abstract_inverted_index.destruction | 168 |
| abstract_inverted_index.identifying | 261 |
| abstract_inverted_index.initiatives | 84 |
| abstract_inverted_index.occurrence) | 219 |
| abstract_inverted_index.population. | 255 |
| abstract_inverted_index.predictors, | 202 |
| abstract_inverted_index.substantial | 53 |
| abstract_inverted_index.traditional | 96 |
| abstract_inverted_index.variability | 274 |
| abstract_inverted_index.automatically | 239 |
| abstract_inverted_index.hydroclimatic | 34, 289 |
| abstract_inverted_index.precipitation | 77, 213 |
| abstract_inverted_index.socioeconomic | 138 |
| abstract_inverted_index.vulnerability | 311 |
| abstract_inverted_index.concentrations | 207 |
| abstract_inverted_index.infrastructure | 61 |
| abstract_inverted_index.susceptibility | 266 |
| abstract_inverted_index.unfortunately, | 102 |
| abstract_inverted_index.infrastructure, | 170 |
| abstract_inverted_index.geomorphologically | 124 |
| abstract_inverted_index.class="journal-contentHeaderColor">Abstract.</strong> | 1 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5013197657, https://openalex.org/A5064531227, https://openalex.org/A5032209391, https://openalex.org/A5101636503, https://openalex.org/A5057947877, https://openalex.org/A5069708224, https://openalex.org/A5083198283 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I102322142, https://openalex.org/I140172145 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile |