Comment on “Pollination supply models from a local to global scale”: convolutional neural networks can improve pollination supply models at a global scale Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.5194/we-24-81-2024
Tools to predict pollinator activity at regional scales generally rely on land cover maps, combined with human-inferred mechanistic rules and/or expert knowledge. Recently, Giménez-García et al. (2023) showed that, using large pollinator datasets, different environmental variables, and machine learning models, those predictions can be enhanced but at the cost of losing model interpretability. Here, we complement this work by exploring the potential of using advanced machine learning techniques to directly infer wild-bee visitation rates across different biomes only from land cover maps and available pollinator data while maintaining a mechanistic interpretation. In particular, we assess the ability of convolutional neural networks (CNNs), which are deep learning models, to infer mechanistic rules able to predict pollinator habitat use. At a global scale, our CNNs achieved a rank correlation coefficient of 0.44 between predictions and observations of pollinator visitation rates, doubling that of the previous human-inferred mechanistic models presented in Giménez-García et al. (2023) (0.17). Most interestingly, we show that the predictions depend on both landscape composition and configuration variables, with prediction rules being more complex than those of traditional mechanistic processes. We also demonstrate how CNNs can improve the predictions of our previous data-driven models that did not use land cover maps by creating a new model that combined the predictions of our CNN with those of our best regression model based on environmental variables, a Bayesian ridge regressor. This new ensemble model improved the overall rank correlation from 0.56 to 0.64.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5194/we-24-81-2024
- OA Status
- diamond
- References
- 30
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404597873
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404597873Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/we-24-81-2024Digital Object Identifier
- Title
-
Comment on “Pollination supply models from a local to global scale”: convolutional neural networks can improve pollination supply models at a global scaleWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-21Full publication date if available
- Authors
-
Alfonso Allen‐Perkins, Á. Giménez-García, Ainhoa Magrach, Javier Galeano, Ana M. Tarquís, Ígnasi BartomeusList of authors in order
- Landing page
-
https://doi.org/10.5194/we-24-81-2024Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5194/we-24-81-2024Direct OA link when available
- Concepts
-
Interpretability, Machine learning, Land cover, Pollinator, Convolutional neural network, Artificial intelligence, Computer science, Pollination, Scale (ratio), Artificial neural network, Ecology, Land use, Cartography, Geography, Biology, PollenTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
30Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404597873 |
|---|---|
| doi | https://doi.org/10.5194/we-24-81-2024 |
| ids.doi | https://doi.org/10.5194/we-24-81-2024 |
| ids.openalex | https://openalex.org/W4404597873 |
| fwci | 0.0 |
| type | article |
| title | Comment on “Pollination supply models from a local to global scale”: convolutional neural networks can improve pollination supply models at a global scale |
| awards[0].id | https://openalex.org/G8092705949 |
| awards[0].funder_id | https://openalex.org/F4320322930 |
| awards[0].display_name | |
| awards[0].funder_award_id | PID2021-122711NB-C21 |
| awards[0].funder_display_name | Ministerio de Ciencia e Innovación |
| awards[1].id | https://openalex.org/G8694103337 |
| awards[1].funder_id | https://openalex.org/F4320322930 |
| awards[1].display_name | |
| awards[1].funder_award_id | PID2021-127607OB-I00 |
| awards[1].funder_display_name | Ministerio de Ciencia e Innovación |
| awards[2].id | https://openalex.org/G6259257317 |
| awards[2].funder_id | https://openalex.org/F4320313831 |
| awards[2].display_name | |
| awards[2].funder_award_id | APOYO-JOVENES-21-9K9EVJ-36-3VPZPJ |
| awards[2].funder_display_name | Comunidad de Madrid |
| awards[3].id | https://openalex.org/G4031523912 |
| awards[3].funder_id | https://openalex.org/F4320322930 |
| awards[3].display_name | |
| awards[3].funder_award_id | RYC2021-032351-I365 |
| awards[3].funder_display_name | Ministerio de Ciencia e Innovación |
| biblio.issue | 2 |
| biblio.volume | 24 |
| biblio.last_page | 96 |
| biblio.first_page | 81 |
| topics[0].id | https://openalex.org/T10487 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1105 |
| topics[0].subfield.display_name | Ecology, Evolution, Behavior and Systematics |
| topics[0].display_name | Plant and animal studies |
| topics[1].id | https://openalex.org/T10702 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9993000030517578 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1311 |
| topics[1].subfield.display_name | Genetics |
| topics[1].display_name | Insect and Arachnid Ecology and Behavior |
| topics[2].id | https://openalex.org/T11641 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9980000257492065 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1109 |
| topics[2].subfield.display_name | Insect Science |
| topics[2].display_name | Insect and Pesticide Research |
| funders[0].id | https://openalex.org/F4320313831 |
| funders[0].ror | |
| funders[0].display_name | Comunidad de Madrid |
| funders[1].id | https://openalex.org/F4320322930 |
| funders[1].ror | https://ror.org/034900433 |
| funders[1].display_name | Ministerio de Ciencia e Innovación |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2781067378 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6667983531951904 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[0].display_name | Interpretability |
| concepts[1].id | https://openalex.org/C119857082 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6334593892097473 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[1].display_name | Machine learning |
| concepts[2].id | https://openalex.org/C2780648208 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6155630350112915 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3001793 |
| concepts[2].display_name | Land cover |
| concepts[3].id | https://openalex.org/C102789151 |
| concepts[3].level | 4 |
| concepts[3].score | 0.6139540076255798 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1141466 |
| concepts[3].display_name | Pollinator |
| concepts[4].id | https://openalex.org/C81363708 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6019809246063232 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[4].display_name | Convolutional neural network |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5389910340309143 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.5282541513442993 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C168197293 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5007905960083008 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q134624 |
| concepts[7].display_name | Pollination |
| concepts[8].id | https://openalex.org/C2778755073 |
| concepts[8].level | 2 |
| concepts[8].score | 0.45183902978897095 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[8].display_name | Scale (ratio) |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4167094826698303 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C18903297 |
| concepts[10].level | 1 |
| concepts[10].score | 0.29505038261413574 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[10].display_name | Ecology |
| concepts[11].id | https://openalex.org/C4792198 |
| concepts[11].level | 2 |
| concepts[11].score | 0.293949693441391 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1165944 |
| concepts[11].display_name | Land use |
| concepts[12].id | https://openalex.org/C58640448 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2102014720439911 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[12].display_name | Cartography |
| concepts[13].id | https://openalex.org/C205649164 |
| concepts[13].level | 0 |
| concepts[13].score | 0.1601138412952423 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[13].display_name | Geography |
| concepts[14].id | https://openalex.org/C86803240 |
| concepts[14].level | 0 |
| concepts[14].score | 0.11683422327041626 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[14].display_name | Biology |
| concepts[15].id | https://openalex.org/C2780618852 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q79932 |
| concepts[15].display_name | Pollen |
| keywords[0].id | https://openalex.org/keywords/interpretability |
| keywords[0].score | 0.6667983531951904 |
| keywords[0].display_name | Interpretability |
| keywords[1].id | https://openalex.org/keywords/machine-learning |
| keywords[1].score | 0.6334593892097473 |
| keywords[1].display_name | Machine learning |
| keywords[2].id | https://openalex.org/keywords/land-cover |
| keywords[2].score | 0.6155630350112915 |
| keywords[2].display_name | Land cover |
| keywords[3].id | https://openalex.org/keywords/pollinator |
| keywords[3].score | 0.6139540076255798 |
| keywords[3].display_name | Pollinator |
| keywords[4].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[4].score | 0.6019809246063232 |
| keywords[4].display_name | Convolutional neural network |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5389910340309143 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.5282541513442993 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/pollination |
| keywords[7].score | 0.5007905960083008 |
| keywords[7].display_name | Pollination |
| keywords[8].id | https://openalex.org/keywords/scale |
| keywords[8].score | 0.45183902978897095 |
| keywords[8].display_name | Scale (ratio) |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.4167094826698303 |
| keywords[9].display_name | Artificial neural network |
| keywords[10].id | https://openalex.org/keywords/ecology |
| keywords[10].score | 0.29505038261413574 |
| keywords[10].display_name | Ecology |
| keywords[11].id | https://openalex.org/keywords/land-use |
| keywords[11].score | 0.293949693441391 |
| keywords[11].display_name | Land use |
| keywords[12].id | https://openalex.org/keywords/cartography |
| keywords[12].score | 0.2102014720439911 |
| keywords[12].display_name | Cartography |
| keywords[13].id | https://openalex.org/keywords/geography |
| keywords[13].score | 0.1601138412952423 |
| keywords[13].display_name | Geography |
| keywords[14].id | https://openalex.org/keywords/biology |
| keywords[14].score | 0.11683422327041626 |
| keywords[14].display_name | Biology |
| language | en |
| locations[0].id | doi:10.5194/we-24-81-2024 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764388058 |
| locations[0].source.issn | 1399-1183, 2193-3081 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1399-1183 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Web Ecology |
| locations[0].source.host_organization | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_name | Copernicus Publications |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_lineage_names | Copernicus Publications |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Web Ecology |
| locations[0].landing_page_url | https://doi.org/10.5194/we-24-81-2024 |
| locations[1].id | pmh:oai:digital.csic.es:10261/388260 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400616 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DIGITAL.CSIC (Spanish National Research Council (CSIC)) |
| locations[1].source.host_organization | https://openalex.org/I134820265 |
| locations[1].source.host_organization_name | Consejo Superior de Investigaciones Científicas |
| locations[1].source.host_organization_lineage | https://openalex.org/I134820265 |
| locations[1].license | cc-by |
| locations[1].pdf_url | https://digital.csic.es/bitstream/10261/388260/1/Comment_Pollination_supply_models_Allen_Perkins.pdf |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Publisher's version |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://hdl.handle.net/10261/388260 |
| locations[2].id | pmh:oai:doaj.org/article:ecf016a8ee554835a5c818dffff8b1d9 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Web Ecology, Vol 24, Pp 81-96 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/ecf016a8ee554835a5c818dffff8b1d9 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5073548954 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3547-2190 |
| authorships[0].author.display_name | Alfonso Allen‐Perkins |
| authorships[0].countries | ES |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I88060688 |
| authorships[0].affiliations[0].raw_affiliation_string | Grupo de Sistemas Complejos (GSC), Universidad Politécnica de Madrid, Madrid, Spain |
| authorships[0].affiliations[1].raw_affiliation_string | Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain |
| authorships[0].institutions[0].id | https://openalex.org/I88060688 |
| authorships[0].institutions[0].ror | https://ror.org/03n6nwv02 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I88060688 |
| authorships[0].institutions[0].country_code | ES |
| authorships[0].institutions[0].display_name | Universidad Politécnica de Madrid |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alfonso Allen-Perkins |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain, Grupo de Sistemas Complejos (GSC), Universidad Politécnica de Madrid, Madrid, Spain |
| authorships[1].author.id | https://openalex.org/A5026135401 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5797-5269 |
| authorships[1].author.display_name | Á. Giménez-García |
| authorships[1].countries | ES |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210092744 |
| authorships[1].affiliations[0].raw_affiliation_string | Basque Centre for Climate Change – BC3, Leioa, Spain |
| authorships[1].institutions[0].id | https://openalex.org/I4210092744 |
| authorships[1].institutions[0].ror | https://ror.org/00eqwze33 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210092744 |
| authorships[1].institutions[0].country_code | ES |
| authorships[1].institutions[0].display_name | Basque Centre for Climate Change |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Angel Giménez-García |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Basque Centre for Climate Change – BC3, Leioa, Spain |
| authorships[2].author.id | https://openalex.org/A5042450363 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2155-7556 |
| authorships[2].author.display_name | Ainhoa Magrach |
| authorships[2].countries | ES |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210092744 |
| authorships[2].affiliations[0].raw_affiliation_string | Basque Centre for Climate Change – BC3, Leioa, Spain |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I110594554 |
| authorships[2].affiliations[1].raw_affiliation_string | Ikerbasque, Basque Foundation for Science, Bilbao, Spain |
| authorships[2].institutions[0].id | https://openalex.org/I4210092744 |
| authorships[2].institutions[0].ror | https://ror.org/00eqwze33 |
| authorships[2].institutions[0].type | nonprofit |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210092744 |
| authorships[2].institutions[0].country_code | ES |
| authorships[2].institutions[0].display_name | Basque Centre for Climate Change |
| authorships[2].institutions[1].id | https://openalex.org/I110594554 |
| authorships[2].institutions[1].ror | https://ror.org/01cc3fy72 |
| authorships[2].institutions[1].type | other |
| authorships[2].institutions[1].lineage | https://openalex.org/I110594554 |
| authorships[2].institutions[1].country_code | ES |
| authorships[2].institutions[1].display_name | Ikerbasque |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ainhoa Magrach |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Basque Centre for Climate Change – BC3, Leioa, Spain, Ikerbasque, Basque Foundation for Science, Bilbao, Spain |
| authorships[3].author.id | https://openalex.org/A5026267991 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0706-4317 |
| authorships[3].author.display_name | Javier Galeano |
| authorships[3].countries | ES |
| authorships[3].affiliations[0].raw_affiliation_string | Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I88060688 |
| authorships[3].affiliations[1].raw_affiliation_string | Grupo de Sistemas Complejos (GSC), Universidad Politécnica de Madrid, Madrid, Spain |
| authorships[3].institutions[0].id | https://openalex.org/I88060688 |
| authorships[3].institutions[0].ror | https://ror.org/03n6nwv02 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I88060688 |
| authorships[3].institutions[0].country_code | ES |
| authorships[3].institutions[0].display_name | Universidad Politécnica de Madrid |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Javier Galeano |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain, Grupo de Sistemas Complejos (GSC), Universidad Politécnica de Madrid, Madrid, Spain |
| authorships[4].author.id | https://openalex.org/A5035073707 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2336-5371 |
| authorships[4].author.display_name | Ana M. Tarquís |
| authorships[4].countries | ES |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I88060688 |
| authorships[4].affiliations[0].raw_affiliation_string | Research Centre for the Management of Agricultural and Environmental Risks (CEIGRAM), Universidad Politécnica de Madrid, Madrid, Spain |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I88060688 |
| authorships[4].affiliations[1].raw_affiliation_string | Grupo de Sistemas Complejos (GSC), Universidad Politécnica de Madrid, Madrid, Spain |
| authorships[4].institutions[0].id | https://openalex.org/I88060688 |
| authorships[4].institutions[0].ror | https://ror.org/03n6nwv02 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I88060688 |
| authorships[4].institutions[0].country_code | ES |
| authorships[4].institutions[0].display_name | Universidad Politécnica de Madrid |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ana María Tarquis |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Grupo de Sistemas Complejos (GSC), Universidad Politécnica de Madrid, Madrid, Spain, Research Centre for the Management of Agricultural and Environmental Risks (CEIGRAM), Universidad Politécnica de Madrid, Madrid, Spain |
| authorships[5].author.id | https://openalex.org/A5086620773 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7893-4389 |
| authorships[5].author.display_name | Ígnasi Bartomeus |
| authorships[5].countries | ES |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210089289 |
| authorships[5].affiliations[0].raw_affiliation_string | Departamento de Ecología Integrativa, Estación Biológica de Doñana, EBD-CSIC, Seville, Spain |
| authorships[5].institutions[0].id | https://openalex.org/I4210089289 |
| authorships[5].institutions[0].ror | https://ror.org/006gw6z14 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I134820265, https://openalex.org/I4210089289 |
| authorships[5].institutions[0].country_code | ES |
| authorships[5].institutions[0].display_name | Estación Biológica de Doñana |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Ignasi Bartomeus |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Departamento de Ecología Integrativa, Estación Biológica de Doñana, EBD-CSIC, Seville, Spain |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5194/we-24-81-2024 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Comment on “Pollination supply models from a local to global scale”: convolutional neural networks can improve pollination supply models at a global scale |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10487 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1105 |
| primary_topic.subfield.display_name | Ecology, Evolution, Behavior and Systematics |
| primary_topic.display_name | Plant and animal studies |
| related_works | https://openalex.org/W4292317591, https://openalex.org/W2153195003, https://openalex.org/W2587663446, https://openalex.org/W2254704327, https://openalex.org/W4381426054, https://openalex.org/W2379331219, https://openalex.org/W2903980083, https://openalex.org/W3062421009, https://openalex.org/W2101862601, https://openalex.org/W1974535339 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.5194/we-24-81-2024 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764388058 |
| best_oa_location.source.issn | 1399-1183, 2193-3081 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1399-1183 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Web Ecology |
| best_oa_location.source.host_organization | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_name | Copernicus Publications |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_lineage_names | Copernicus Publications |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Web Ecology |
| best_oa_location.landing_page_url | https://doi.org/10.5194/we-24-81-2024 |
| primary_location.id | doi:10.5194/we-24-81-2024 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764388058 |
| primary_location.source.issn | 1399-1183, 2193-3081 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1399-1183 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Web Ecology |
| primary_location.source.host_organization | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_name | Copernicus Publications |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_lineage_names | Copernicus Publications |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Web Ecology |
| primary_location.landing_page_url | https://doi.org/10.5194/we-24-81-2024 |
| publication_date | 2024-11-21 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4200554082, https://openalex.org/W4281728047, https://openalex.org/W2786358356, https://openalex.org/W3013341479, https://openalex.org/W4225691024, https://openalex.org/W3003996650, https://openalex.org/W3043151163, https://openalex.org/W4387335705, https://openalex.org/W4205699531, https://openalex.org/W2194775991, https://openalex.org/W2122892688, https://openalex.org/W2151300021, https://openalex.org/W2963454111, https://openalex.org/W2015861736, https://openalex.org/W2122843759, https://openalex.org/W2809750665, https://openalex.org/W4399637800, https://openalex.org/W2937730115, https://openalex.org/W2101862601, https://openalex.org/W3164704144, https://openalex.org/W2113399683, https://openalex.org/W1609810996, https://openalex.org/W2616247523, https://openalex.org/W2523400296, https://openalex.org/W2112463659, https://openalex.org/W2755515114, https://openalex.org/W2145720307, https://openalex.org/W2911521504, https://openalex.org/W2097228425, https://openalex.org/W3102564565 |
| referenced_works_count | 30 |
| abstract_inverted_index.a | 89, 119, 125, 204, 225 |
| abstract_inverted_index.At | 118 |
| abstract_inverted_index.In | 92 |
| abstract_inverted_index.We | 181 |
| abstract_inverted_index.at | 6, 47 |
| abstract_inverted_index.be | 44 |
| abstract_inverted_index.by | 59, 202 |
| abstract_inverted_index.et | 25, 150 |
| abstract_inverted_index.in | 148 |
| abstract_inverted_index.of | 50, 63, 98, 129, 135, 141, 177, 190, 211, 216 |
| abstract_inverted_index.on | 11, 162, 222 |
| abstract_inverted_index.to | 2, 69, 108, 113, 240 |
| abstract_inverted_index.we | 55, 94, 156 |
| abstract_inverted_index.CNN | 213 |
| abstract_inverted_index.al. | 26, 151 |
| abstract_inverted_index.and | 37, 83, 133, 166 |
| abstract_inverted_index.are | 104 |
| abstract_inverted_index.but | 46 |
| abstract_inverted_index.can | 43, 186 |
| abstract_inverted_index.did | 196 |
| abstract_inverted_index.how | 184 |
| abstract_inverted_index.new | 205, 230 |
| abstract_inverted_index.not | 197 |
| abstract_inverted_index.our | 122, 191, 212, 217 |
| abstract_inverted_index.the | 48, 61, 96, 142, 159, 188, 209, 234 |
| abstract_inverted_index.use | 198 |
| abstract_inverted_index.0.44 | 130 |
| abstract_inverted_index.0.56 | 239 |
| abstract_inverted_index.CNNs | 123, 185 |
| abstract_inverted_index.Most | 154 |
| abstract_inverted_index.This | 229 |
| abstract_inverted_index.able | 112 |
| abstract_inverted_index.also | 182 |
| abstract_inverted_index.best | 218 |
| abstract_inverted_index.both | 163 |
| abstract_inverted_index.cost | 49 |
| abstract_inverted_index.data | 86 |
| abstract_inverted_index.deep | 105 |
| abstract_inverted_index.from | 79, 238 |
| abstract_inverted_index.land | 12, 80, 199 |
| abstract_inverted_index.maps | 82, 201 |
| abstract_inverted_index.more | 173 |
| abstract_inverted_index.only | 78 |
| abstract_inverted_index.rank | 126, 236 |
| abstract_inverted_index.rely | 10 |
| abstract_inverted_index.show | 157 |
| abstract_inverted_index.than | 175 |
| abstract_inverted_index.that | 140, 158, 195, 207 |
| abstract_inverted_index.this | 57 |
| abstract_inverted_index.use. | 117 |
| abstract_inverted_index.with | 16, 169, 214 |
| abstract_inverted_index.work | 58 |
| abstract_inverted_index.0.64. | 241 |
| abstract_inverted_index.Here, | 54 |
| abstract_inverted_index.Tools | 1 |
| abstract_inverted_index.based | 221 |
| abstract_inverted_index.being | 172 |
| abstract_inverted_index.cover | 13, 81, 200 |
| abstract_inverted_index.infer | 71, 109 |
| abstract_inverted_index.large | 31 |
| abstract_inverted_index.maps, | 14 |
| abstract_inverted_index.model | 52, 206, 220, 232 |
| abstract_inverted_index.rates | 74 |
| abstract_inverted_index.ridge | 227 |
| abstract_inverted_index.rules | 19, 111, 171 |
| abstract_inverted_index.that, | 29 |
| abstract_inverted_index.those | 41, 176, 215 |
| abstract_inverted_index.using | 30, 64 |
| abstract_inverted_index.which | 103 |
| abstract_inverted_index.while | 87 |
| abstract_inverted_index.(2023) | 27, 152 |
| abstract_inverted_index.across | 75 |
| abstract_inverted_index.and/or | 20 |
| abstract_inverted_index.assess | 95 |
| abstract_inverted_index.biomes | 77 |
| abstract_inverted_index.depend | 161 |
| abstract_inverted_index.expert | 21 |
| abstract_inverted_index.global | 120 |
| abstract_inverted_index.losing | 51 |
| abstract_inverted_index.models | 146, 194 |
| abstract_inverted_index.neural | 100 |
| abstract_inverted_index.rates, | 138 |
| abstract_inverted_index.scale, | 121 |
| abstract_inverted_index.scales | 8 |
| abstract_inverted_index.showed | 28 |
| abstract_inverted_index.(0.17). | 153 |
| abstract_inverted_index.(CNNs), | 102 |
| abstract_inverted_index.ability | 97 |
| abstract_inverted_index.between | 131 |
| abstract_inverted_index.complex | 174 |
| abstract_inverted_index.habitat | 116 |
| abstract_inverted_index.improve | 187 |
| abstract_inverted_index.machine | 38, 66 |
| abstract_inverted_index.models, | 40, 107 |
| abstract_inverted_index.overall | 235 |
| abstract_inverted_index.predict | 3, 114 |
| abstract_inverted_index.Bayesian | 226 |
| abstract_inverted_index.achieved | 124 |
| abstract_inverted_index.activity | 5 |
| abstract_inverted_index.advanced | 65 |
| abstract_inverted_index.combined | 15, 208 |
| abstract_inverted_index.creating | 203 |
| abstract_inverted_index.directly | 70 |
| abstract_inverted_index.doubling | 139 |
| abstract_inverted_index.enhanced | 45 |
| abstract_inverted_index.ensemble | 231 |
| abstract_inverted_index.improved | 233 |
| abstract_inverted_index.learning | 39, 67, 106 |
| abstract_inverted_index.networks | 101 |
| abstract_inverted_index.previous | 143, 192 |
| abstract_inverted_index.regional | 7 |
| abstract_inverted_index.wild-bee | 72 |
| abstract_inverted_index.Abstract. | 0 |
| abstract_inverted_index.Recently, | 23 |
| abstract_inverted_index.available | 84 |
| abstract_inverted_index.datasets, | 33 |
| abstract_inverted_index.different | 34, 76 |
| abstract_inverted_index.exploring | 60 |
| abstract_inverted_index.generally | 9 |
| abstract_inverted_index.landscape | 164 |
| abstract_inverted_index.potential | 62 |
| abstract_inverted_index.presented | 147 |
| abstract_inverted_index.complement | 56 |
| abstract_inverted_index.knowledge. | 22 |
| abstract_inverted_index.pollinator | 4, 32, 85, 115, 136 |
| abstract_inverted_index.prediction | 170 |
| abstract_inverted_index.processes. | 180 |
| abstract_inverted_index.regression | 219 |
| abstract_inverted_index.regressor. | 228 |
| abstract_inverted_index.techniques | 68 |
| abstract_inverted_index.variables, | 36, 168, 224 |
| abstract_inverted_index.visitation | 73, 137 |
| abstract_inverted_index.coefficient | 128 |
| abstract_inverted_index.composition | 165 |
| abstract_inverted_index.correlation | 127, 237 |
| abstract_inverted_index.data-driven | 193 |
| abstract_inverted_index.demonstrate | 183 |
| abstract_inverted_index.maintaining | 88 |
| abstract_inverted_index.mechanistic | 18, 90, 110, 145, 179 |
| abstract_inverted_index.particular, | 93 |
| abstract_inverted_index.predictions | 42, 132, 160, 189, 210 |
| abstract_inverted_index.traditional | 178 |
| abstract_inverted_index.observations | 134 |
| abstract_inverted_index.configuration | 167 |
| abstract_inverted_index.convolutional | 99 |
| abstract_inverted_index.environmental | 35, 223 |
| abstract_inverted_index.human-inferred | 17, 144 |
| abstract_inverted_index.interestingly, | 155 |
| abstract_inverted_index.interpretation. | 91 |
| abstract_inverted_index.Giménez-García | 24, 149 |
| abstract_inverted_index.interpretability. | 53 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5042450363, https://openalex.org/A5086620773, https://openalex.org/A5035073707, https://openalex.org/A5026135401, https://openalex.org/A5026267991, https://openalex.org/A5073548954 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I110594554, https://openalex.org/I4210089289, https://openalex.org/I4210092744, https://openalex.org/I88060688 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.7300000190734863 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.17635103 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |