Common human diseases prediction using machine learning based on survey data Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.11591/eei.v11i6.3405
In this era, the moment has arrived to move away from disease as the primary emphasis of medical treatment. Although impressive, the multiple techniques that have been developed to detect the diseases. In this time, there are some types of diseases COVID-19, normal flue, migraine, lung disease, heart disease, kidney disease, diabetics, stomach disease, gastric, bone disease, autism are the very common diseases. In this analysis, we analyze disease symptoms and have done disease predictions based on their symptoms. We studied a range of symptoms and took a survey from people in order to complete the task. Several classification algorithms have been employed to train the model. Furthermore, performance evaluation matrices are used to measure the model's performance. Finally, we discovered that the part classifier surpasses the others.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.11591/eei.v11i6.3405
- https://beei.org/index.php/EEI/article/download/3405/3022
- OA Status
- diamond
- Cited By
- 7
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4298012329
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4298012329Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.11591/eei.v11i6.3405Digital Object Identifier
- Title
-
Common human diseases prediction using machine learning based on survey dataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-09-29Full publication date if available
- Authors
-
Jabir Al Nahian, Abu Kaisar Mohammad Masum, Sheikh Abujar, Md. Jueal MiaList of authors in order
- Landing page
-
https://doi.org/10.11591/eei.v11i6.3405Publisher landing page
- PDF URL
-
https://beei.org/index.php/EEI/article/download/3405/3022Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://beei.org/index.php/EEI/article/download/3405/3022Direct OA link when available
- Concepts
-
Disease, Machine learning, Computer science, Artificial intelligence, Classifier (UML), Medicine, PathologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 3, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4298012329 |
|---|---|
| doi | https://doi.org/10.11591/eei.v11i6.3405 |
| ids.doi | https://doi.org/10.11591/eei.v11i6.3405 |
| ids.openalex | https://openalex.org/W4298012329 |
| fwci | 2.23503845 |
| type | article |
| title | Common human diseases prediction using machine learning based on survey data |
| biblio.issue | 6 |
| biblio.volume | 11 |
| biblio.last_page | 3508 |
| biblio.first_page | 3498 |
| topics[0].id | https://openalex.org/T11396 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.9527999758720398 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3605 |
| topics[0].subfield.display_name | Health Information Management |
| topics[0].display_name | Artificial Intelligence in Healthcare |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779134260 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6467764377593994 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[0].display_name | Disease |
| concepts[1].id | https://openalex.org/C119857082 |
| concepts[1].level | 1 |
| concepts[1].score | 0.618952751159668 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[1].display_name | Machine learning |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5074886679649353 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5045498609542847 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C95623464 |
| concepts[4].level | 2 |
| concepts[4].score | 0.48371437191963196 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[4].display_name | Classifier (UML) |
| concepts[5].id | https://openalex.org/C71924100 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4580288529396057 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[5].display_name | Medicine |
| concepts[6].id | https://openalex.org/C142724271 |
| concepts[6].level | 1 |
| concepts[6].score | 0.20593783259391785 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[6].display_name | Pathology |
| keywords[0].id | https://openalex.org/keywords/disease |
| keywords[0].score | 0.6467764377593994 |
| keywords[0].display_name | Disease |
| keywords[1].id | https://openalex.org/keywords/machine-learning |
| keywords[1].score | 0.618952751159668 |
| keywords[1].display_name | Machine learning |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5074886679649353 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5045498609542847 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/classifier |
| keywords[4].score | 0.48371437191963196 |
| keywords[4].display_name | Classifier (UML) |
| keywords[5].id | https://openalex.org/keywords/medicine |
| keywords[5].score | 0.4580288529396057 |
| keywords[5].display_name | Medicine |
| keywords[6].id | https://openalex.org/keywords/pathology |
| keywords[6].score | 0.20593783259391785 |
| keywords[6].display_name | Pathology |
| language | en |
| locations[0].id | doi:10.11591/eei.v11i6.3405 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2765016208 |
| locations[0].source.issn | 2302-9285 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2302-9285 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Bulletin of Electrical Engineering and Informatics |
| locations[0].source.host_organization | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315009 |
| locations[0].source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| locations[0].license | cc-by-sa |
| locations[0].pdf_url | https://beei.org/index.php/EEI/article/download/3405/3022 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Bulletin of Electrical Engineering and Informatics |
| locations[0].landing_page_url | https://doi.org/10.11591/eei.v11i6.3405 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5061177356 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9161-3042 |
| authorships[0].author.display_name | Jabir Al Nahian |
| authorships[0].countries | BD |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I200606013 |
| authorships[0].affiliations[0].raw_affiliation_string | Daffodil International University |
| authorships[0].institutions[0].id | https://openalex.org/I200606013 |
| authorships[0].institutions[0].ror | https://ror.org/052t4a858 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I200606013 |
| authorships[0].institutions[0].country_code | BD |
| authorships[0].institutions[0].display_name | Daffodil International University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jabir Al Nahian |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Daffodil International University |
| authorships[1].author.id | https://openalex.org/A5032200051 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3190-9041 |
| authorships[1].author.display_name | Abu Kaisar Mohammad Masum |
| authorships[1].countries | BD |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I200606013 |
| authorships[1].affiliations[0].raw_affiliation_string | Daffodil International University |
| authorships[1].institutions[0].id | https://openalex.org/I200606013 |
| authorships[1].institutions[0].ror | https://ror.org/052t4a858 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I200606013 |
| authorships[1].institutions[0].country_code | BD |
| authorships[1].institutions[0].display_name | Daffodil International University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Abu Kaisar Mohammad Masum |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Daffodil International University |
| authorships[2].author.id | https://openalex.org/A5034385435 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3563-2118 |
| authorships[2].author.display_name | Sheikh Abujar |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I106959904 |
| authorships[2].affiliations[0].raw_affiliation_string | Florida Institute of Technology |
| authorships[2].institutions[0].id | https://openalex.org/I106959904 |
| authorships[2].institutions[0].ror | https://ror.org/04atsbb87 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I106959904 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Florida Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sheikh Abujar |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Florida Institute of Technology |
| authorships[3].author.id | https://openalex.org/A5090885879 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9383-8739 |
| authorships[3].author.display_name | Md. Jueal Mia |
| authorships[3].countries | BD |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I200606013 |
| authorships[3].affiliations[0].raw_affiliation_string | Daffodil International University |
| authorships[3].institutions[0].id | https://openalex.org/I200606013 |
| authorships[3].institutions[0].ror | https://ror.org/052t4a858 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I200606013 |
| authorships[3].institutions[0].country_code | BD |
| authorships[3].institutions[0].display_name | Daffodil International University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Md. Jueal Mia |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Daffodil International University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://beei.org/index.php/EEI/article/download/3405/3022 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Common human diseases prediction using machine learning based on survey data |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11396 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.9527999758720398 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3605 |
| primary_topic.subfield.display_name | Health Information Management |
| primary_topic.display_name | Artificial Intelligence in Healthcare |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4224009465, https://openalex.org/W4286629047, https://openalex.org/W4306321456, https://openalex.org/W4285260836, https://openalex.org/W3046775127, https://openalex.org/W2556319748 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.11591/eei.v11i6.3405 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2765016208 |
| best_oa_location.source.issn | 2302-9285 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2302-9285 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Bulletin of Electrical Engineering and Informatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| best_oa_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | https://beei.org/index.php/EEI/article/download/3405/3022 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Bulletin of Electrical Engineering and Informatics |
| best_oa_location.landing_page_url | https://doi.org/10.11591/eei.v11i6.3405 |
| primary_location.id | doi:10.11591/eei.v11i6.3405 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2765016208 |
| primary_location.source.issn | 2302-9285 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2302-9285 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Bulletin of Electrical Engineering and Informatics |
| primary_location.source.host_organization | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_name | Institute of Advanced Engineering and Science (IAES) |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315009 |
| primary_location.source.host_organization_lineage_names | Institute of Advanced Engineering and Science (IAES) |
| primary_location.license | cc-by-sa |
| primary_location.pdf_url | https://beei.org/index.php/EEI/article/download/3405/3022 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Bulletin of Electrical Engineering and Informatics |
| primary_location.landing_page_url | https://doi.org/10.11591/eei.v11i6.3405 |
| publication_date | 2022-09-29 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3137773357, https://openalex.org/W2036570733, https://openalex.org/W1523302822, https://openalex.org/W2963445792, https://openalex.org/W1979951318, https://openalex.org/W3084996758, https://openalex.org/W2766663781, https://openalex.org/W2084391800, https://openalex.org/W3036259678, https://openalex.org/W3192976953, https://openalex.org/W3048749423, https://openalex.org/W3023591976, https://openalex.org/W2993330300, https://openalex.org/W2120091332, https://openalex.org/W3004122363, https://openalex.org/W2787667267, https://openalex.org/W2565316834, https://openalex.org/W2911258655, https://openalex.org/W4381304672, https://openalex.org/W2995098893, https://openalex.org/W3113444169, https://openalex.org/W3048833945, https://openalex.org/W3082883504, https://openalex.org/W3138471145, https://openalex.org/W2899963038, https://openalex.org/W3082884289, https://openalex.org/W2956719809, https://openalex.org/W3131326546 |
| referenced_works_count | 28 |
| abstract_inverted_index.a | 81, 87 |
| abstract_inverted_index.In | 0, 32, 63 |
| abstract_inverted_index.We | 79 |
| abstract_inverted_index.as | 12 |
| abstract_inverted_index.in | 91 |
| abstract_inverted_index.of | 16, 39, 83 |
| abstract_inverted_index.on | 76 |
| abstract_inverted_index.to | 7, 28, 93, 103, 113 |
| abstract_inverted_index.we | 66, 119 |
| abstract_inverted_index.and | 70, 85 |
| abstract_inverted_index.are | 36, 58, 111 |
| abstract_inverted_index.has | 5 |
| abstract_inverted_index.the | 3, 13, 21, 30, 59, 95, 105, 115, 122, 126 |
| abstract_inverted_index.away | 9 |
| abstract_inverted_index.been | 26, 101 |
| abstract_inverted_index.bone | 55 |
| abstract_inverted_index.done | 72 |
| abstract_inverted_index.era, | 2 |
| abstract_inverted_index.from | 10, 89 |
| abstract_inverted_index.have | 25, 71, 100 |
| abstract_inverted_index.lung | 45 |
| abstract_inverted_index.move | 8 |
| abstract_inverted_index.part | 123 |
| abstract_inverted_index.some | 37 |
| abstract_inverted_index.that | 24, 121 |
| abstract_inverted_index.this | 1, 33, 64 |
| abstract_inverted_index.took | 86 |
| abstract_inverted_index.used | 112 |
| abstract_inverted_index.very | 60 |
| abstract_inverted_index.based | 75 |
| abstract_inverted_index.flue, | 43 |
| abstract_inverted_index.heart | 47 |
| abstract_inverted_index.order | 92 |
| abstract_inverted_index.range | 82 |
| abstract_inverted_index.task. | 96 |
| abstract_inverted_index.their | 77 |
| abstract_inverted_index.there | 35 |
| abstract_inverted_index.time, | 34 |
| abstract_inverted_index.train | 104 |
| abstract_inverted_index.types | 38 |
| abstract_inverted_index.autism | 57 |
| abstract_inverted_index.common | 61 |
| abstract_inverted_index.detect | 29 |
| abstract_inverted_index.kidney | 49 |
| abstract_inverted_index.model. | 106 |
| abstract_inverted_index.moment | 4 |
| abstract_inverted_index.normal | 42 |
| abstract_inverted_index.people | 90 |
| abstract_inverted_index.survey | 88 |
| abstract_inverted_index.Several | 97 |
| abstract_inverted_index.analyze | 67 |
| abstract_inverted_index.arrived | 6 |
| abstract_inverted_index.disease | 11, 68, 73 |
| abstract_inverted_index.measure | 114 |
| abstract_inverted_index.medical | 17 |
| abstract_inverted_index.model's | 116 |
| abstract_inverted_index.others. | 127 |
| abstract_inverted_index.primary | 14 |
| abstract_inverted_index.stomach | 52 |
| abstract_inverted_index.studied | 80 |
| abstract_inverted_index.Although | 19 |
| abstract_inverted_index.Finally, | 118 |
| abstract_inverted_index.complete | 94 |
| abstract_inverted_index.disease, | 46, 48, 50, 53, 56 |
| abstract_inverted_index.diseases | 40 |
| abstract_inverted_index.emphasis | 15 |
| abstract_inverted_index.employed | 102 |
| abstract_inverted_index.gastric, | 54 |
| abstract_inverted_index.matrices | 110 |
| abstract_inverted_index.multiple | 22 |
| abstract_inverted_index.symptoms | 69, 84 |
| abstract_inverted_index.COVID-19, | 41 |
| abstract_inverted_index.analysis, | 65 |
| abstract_inverted_index.developed | 27 |
| abstract_inverted_index.diseases. | 31, 62 |
| abstract_inverted_index.migraine, | 44 |
| abstract_inverted_index.surpasses | 125 |
| abstract_inverted_index.symptoms. | 78 |
| abstract_inverted_index.algorithms | 99 |
| abstract_inverted_index.classifier | 124 |
| abstract_inverted_index.diabetics, | 51 |
| abstract_inverted_index.discovered | 120 |
| abstract_inverted_index.evaluation | 109 |
| abstract_inverted_index.techniques | 23 |
| abstract_inverted_index.treatment. | 18 |
| abstract_inverted_index.impressive, | 20 |
| abstract_inverted_index.performance | 108 |
| abstract_inverted_index.predictions | 74 |
| abstract_inverted_index.Furthermore, | 107 |
| abstract_inverted_index.performance. | 117 |
| abstract_inverted_index.classification | 98 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.75 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.89264055 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |