COMMON SHOCK MODELS FOR CLAIM ARRAYS Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1017/asb.2018.18
The paper is concerned with multiple claim arrays. In recognition of the extensive use by practitioners of large correlation matrices for the estimation of diversification benefits in capital modelling, we develop a methodology for the construction of such correlation structures (to any dimension). Indeed, the literature does not document any methodology by which practitioners, who often parameterise those correlations by means of informed guesswork, may do so in a disciplined and parsimonious manner. We construct a broad and flexible family of models, where dependency is induced by common shock components. Models incorporate dependencies between observations both within arrays and between arrays. Arrays are of general shape (possibly with holes), but include the usual cases of claim triangles and trapezia that appear in the literature. General forms of dependency are considered with cell-, row-, column-, diagonal-wise, and other forms of dependency as special cases. Substantial effort is applied to practical interpretation of such matrices generated by the models constructed here. Reasonably realistic examples are examined, in which an expression is obtained for the general entry in the correlation matrix in terms of a limited set of parameters, each of which has a straightforward intuitive meaning to the practitioner. This will maximise chance of obtaining a reliable matrix. This construction is illustrated by a numerical example.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1017/asb.2018.18
- OA Status
- green
- Cited By
- 16
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2588603926
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2588603926Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1017/asb.2018.18Digital Object Identifier
- Title
-
COMMON SHOCK MODELS FOR CLAIM ARRAYSWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-06-08Full publication date if available
- Authors
-
Benjamin Avanzi, Greg Taylor, Bernard WongList of authors in order
- Landing page
-
https://doi.org/10.1017/asb.2018.18Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/11343/235607Direct OA link when available
- Concepts
-
Dependency (UML), Diagonal, Computer science, Construct (python library), Dimension (graph theory), Matrix (chemical analysis), Diversification (marketing strategy), Set (abstract data type), Interpretation (philosophy), Matching (statistics), Data mining, Theoretical computer science, Mathematics, Artificial intelligence, Statistics, Pure mathematics, Geometry, Programming language, Materials science, Business, Marketing, Composite materialTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
16Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2023: 2, 2022: 1, 2021: 4Per-year citation counts (last 5 years)
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2588603926 |
|---|---|
| doi | https://doi.org/10.1017/asb.2018.18 |
| ids.doi | https://doi.org/10.1017/asb.2018.18 |
| ids.mag | 2588603926 |
| ids.openalex | https://openalex.org/W2588603926 |
| fwci | 2.21447321 |
| type | article |
| title | COMMON SHOCK MODELS FOR CLAIM ARRAYS |
| biblio.issue | 3 |
| biblio.volume | 48 |
| biblio.last_page | 1136 |
| biblio.first_page | 1109 |
| topics[0].id | https://openalex.org/T11720 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Probability and Risk Models |
| topics[1].id | https://openalex.org/T10974 |
| topics[1].field.id | https://openalex.org/fields/14 |
| topics[1].field.display_name | Business, Management and Accounting |
| topics[1].score | 0.9799000024795532 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1404 |
| topics[1].subfield.display_name | Management Information Systems |
| topics[1].display_name | Advanced Queuing Theory Analysis |
| topics[2].id | https://openalex.org/T11235 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9728999733924866 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistical Methods in Clinical Trials |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C19768560 |
| concepts[0].level | 2 |
| concepts[0].score | 0.743905782699585 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q320727 |
| concepts[0].display_name | Dependency (UML) |
| concepts[1].id | https://openalex.org/C130367717 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6287246942520142 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q189791 |
| concepts[1].display_name | Diagonal |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6158870458602905 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2780801425 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5269941687583923 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5164392 |
| concepts[3].display_name | Construct (python library) |
| concepts[4].id | https://openalex.org/C33676613 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5264635682106018 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q13415176 |
| concepts[4].display_name | Dimension (graph theory) |
| concepts[5].id | https://openalex.org/C106487976 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5037721991539001 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[5].display_name | Matrix (chemical analysis) |
| concepts[6].id | https://openalex.org/C180916674 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4940939247608185 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3711935 |
| concepts[6].display_name | Diversification (marketing strategy) |
| concepts[7].id | https://openalex.org/C177264268 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4708152413368225 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[7].display_name | Set (abstract data type) |
| concepts[8].id | https://openalex.org/C527412718 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4639418125152588 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q855395 |
| concepts[8].display_name | Interpretation (philosophy) |
| concepts[9].id | https://openalex.org/C165064840 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44449177384376526 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1321061 |
| concepts[9].display_name | Matching (statistics) |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3871464729309082 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C80444323 |
| concepts[11].level | 1 |
| concepts[11].score | 0.38521093130111694 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[11].display_name | Theoretical computer science |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.32685157656669617 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.26371127367019653 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.1659117341041565 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C202444582 |
| concepts[15].level | 1 |
| concepts[15].score | 0.14096751809120178 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[15].display_name | Pure mathematics |
| concepts[16].id | https://openalex.org/C2524010 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0898895263671875 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[16].display_name | Geometry |
| concepts[17].id | https://openalex.org/C199360897 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[17].display_name | Programming language |
| concepts[18].id | https://openalex.org/C192562407 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[18].display_name | Materials science |
| concepts[19].id | https://openalex.org/C144133560 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[19].display_name | Business |
| concepts[20].id | https://openalex.org/C162853370 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[20].display_name | Marketing |
| concepts[21].id | https://openalex.org/C159985019 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[21].display_name | Composite material |
| keywords[0].id | https://openalex.org/keywords/dependency |
| keywords[0].score | 0.743905782699585 |
| keywords[0].display_name | Dependency (UML) |
| keywords[1].id | https://openalex.org/keywords/diagonal |
| keywords[1].score | 0.6287246942520142 |
| keywords[1].display_name | Diagonal |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6158870458602905 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/construct |
| keywords[3].score | 0.5269941687583923 |
| keywords[3].display_name | Construct (python library) |
| keywords[4].id | https://openalex.org/keywords/dimension |
| keywords[4].score | 0.5264635682106018 |
| keywords[4].display_name | Dimension (graph theory) |
| keywords[5].id | https://openalex.org/keywords/matrix |
| keywords[5].score | 0.5037721991539001 |
| keywords[5].display_name | Matrix (chemical analysis) |
| keywords[6].id | https://openalex.org/keywords/diversification |
| keywords[6].score | 0.4940939247608185 |
| keywords[6].display_name | Diversification (marketing strategy) |
| keywords[7].id | https://openalex.org/keywords/set |
| keywords[7].score | 0.4708152413368225 |
| keywords[7].display_name | Set (abstract data type) |
| keywords[8].id | https://openalex.org/keywords/interpretation |
| keywords[8].score | 0.4639418125152588 |
| keywords[8].display_name | Interpretation (philosophy) |
| keywords[9].id | https://openalex.org/keywords/matching |
| keywords[9].score | 0.44449177384376526 |
| keywords[9].display_name | Matching (statistics) |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.3871464729309082 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[11].score | 0.38521093130111694 |
| keywords[11].display_name | Theoretical computer science |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.32685157656669617 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.26371127367019653 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/statistics |
| keywords[14].score | 0.1659117341041565 |
| keywords[14].display_name | Statistics |
| keywords[15].id | https://openalex.org/keywords/pure-mathematics |
| keywords[15].score | 0.14096751809120178 |
| keywords[15].display_name | Pure mathematics |
| keywords[16].id | https://openalex.org/keywords/geometry |
| keywords[16].score | 0.0898895263671875 |
| keywords[16].display_name | Geometry |
| language | en |
| locations[0].id | doi:10.1017/asb.2018.18 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S92223472 |
| locations[0].source.issn | 0515-0361, 1783-1350 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0515-0361 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Astin Bulletin |
| locations[0].source.host_organization | https://openalex.org/P4310311721 |
| locations[0].source.host_organization_name | Cambridge University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311721, https://openalex.org/P4310311702 |
| locations[0].source.host_organization_lineage_names | Cambridge University Press, University of Cambridge |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ASTIN Bulletin |
| locations[0].landing_page_url | https://doi.org/10.1017/asb.2018.18 |
| locations[1].id | pmh:oai:jupiter.its.unimelb.edu.au:11343/235607 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402500 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Minerva Access (University of Melbourne) |
| locations[1].source.host_organization | https://openalex.org/I165779595 |
| locations[1].source.host_organization_name | University of Melbourne |
| locations[1].source.host_organization_lineage | https://openalex.org/I165779595 |
| locations[1].license | |
| locations[1].pdf_url | http://hdl.handle.net/11343/235607 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Journal Article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000446328300007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=d4d813f4571fa7d6246bdc0dfeca3a1c |
| locations[2].id | pmh:oai:unsworks.library.unsw.edu.au:1959.4/unsworks_49409 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401737 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | UNSWorks (University of New South Wales, Sydney, Australia) |
| locations[2].source.host_organization | https://openalex.org/I40053085 |
| locations[2].source.host_organization_name | Australian Defence Force Academy |
| locations[2].source.host_organization_lineage | https://openalex.org/I40053085 |
| locations[2].license | cc-by-nc-nd |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | http://purl.org/coar/resource_type/c_6501 |
| locations[2].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | ASTIN Bulletin, 48, 3, 1109-1136 |
| locations[2].landing_page_url | http://hdl.handle.net/1959.4/unsworks_49409 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5007625029 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5424-4292 |
| authorships[0].author.display_name | Benjamin Avanzi |
| authorships[0].countries | AU, CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I70931966 |
| authorships[0].affiliations[0].raw_affiliation_string | Département de Mathématiques et de Statistique, Université de Montréal, Montréal, Quebec H3T 1J4, Canada, E-Mail: |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I31746571 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Risk and Actuarial Studies, UNSW Sydney Business School, UNSW Sydney, NSW 2052, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I31746571 |
| authorships[0].institutions[0].ror | https://ror.org/03r8z3t63 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I31746571 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | UNSW Sydney |
| authorships[0].institutions[1].id | https://openalex.org/I70931966 |
| authorships[0].institutions[1].ror | https://ror.org/0161xgx34 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I70931966 |
| authorships[0].institutions[1].country_code | CA |
| authorships[0].institutions[1].display_name | Université de Montréal |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Benjamin Avanzi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Département de Mathématiques et de Statistique, Université de Montréal, Montréal, Quebec H3T 1J4, Canada, E-Mail:, School of Risk and Actuarial Studies, UNSW Sydney Business School, UNSW Sydney, NSW 2052, Australia |
| authorships[1].author.id | https://openalex.org/A5073481605 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1439-769X |
| authorships[1].author.display_name | Greg Taylor |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I31746571 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Risk and Actuarial Studies, UNSW Sydney Business School, UNSW Sydney, NSW 2052, Australia |
| authorships[1].institutions[0].id | https://openalex.org/I31746571 |
| authorships[1].institutions[0].ror | https://ror.org/03r8z3t63 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I31746571 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | UNSW Sydney |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Greg Taylor |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Risk and Actuarial Studies, UNSW Sydney Business School, UNSW Sydney, NSW 2052, Australia |
| authorships[2].author.id | https://openalex.org/A5046950160 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7124-5342 |
| authorships[2].author.display_name | Bernard Wong |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I31746571 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Risk and Actuarial Studies, UNSW Sydney Business School, UNSW Sydney, NSW 2052, Australia, E-Mail: |
| authorships[2].institutions[0].id | https://openalex.org/I31746571 |
| authorships[2].institutions[0].ror | https://ror.org/03r8z3t63 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I31746571 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | UNSW Sydney |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Bernard Wong |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Risk and Actuarial Studies, UNSW Sydney Business School, UNSW Sydney, NSW 2052, Australia, E-Mail: |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://hdl.handle.net/11343/235607 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | COMMON SHOCK MODELS FOR CLAIM ARRAYS |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11720 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Probability and Risk Models |
| related_works | https://openalex.org/W2366107444, https://openalex.org/W4388145910, https://openalex.org/W1976205134, https://openalex.org/W2381570729, https://openalex.org/W4248336175, https://openalex.org/W3009369890, https://openalex.org/W2031260042, https://openalex.org/W2391445434, https://openalex.org/W4312490297, https://openalex.org/W2062212388 |
| cited_by_count | 16 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 4 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 3 |
| counts_by_year[6].year | 2018 |
| counts_by_year[6].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:jupiter.its.unimelb.edu.au:11343/235607 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402500 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Minerva Access (University of Melbourne) |
| best_oa_location.source.host_organization | https://openalex.org/I165779595 |
| best_oa_location.source.host_organization_name | University of Melbourne |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I165779595 |
| best_oa_location.license | |
| best_oa_location.pdf_url | http://hdl.handle.net/11343/235607 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Journal Article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000446328300007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=d4d813f4571fa7d6246bdc0dfeca3a1c |
| primary_location.id | doi:10.1017/asb.2018.18 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S92223472 |
| primary_location.source.issn | 0515-0361, 1783-1350 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0515-0361 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Astin Bulletin |
| primary_location.source.host_organization | https://openalex.org/P4310311721 |
| primary_location.source.host_organization_name | Cambridge University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311721, https://openalex.org/P4310311702 |
| primary_location.source.host_organization_lineage_names | Cambridge University Press, University of Cambridge |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ASTIN Bulletin |
| primary_location.landing_page_url | https://doi.org/10.1017/asb.2018.18 |
| publication_date | 2018-06-08 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2153086098, https://openalex.org/W1982763379, https://openalex.org/W2139916690, https://openalex.org/W3122024892, https://openalex.org/W2120185573, https://openalex.org/W6651023774, https://openalex.org/W2117118065, https://openalex.org/W1896042795, https://openalex.org/W2152023476, https://openalex.org/W2090874083, https://openalex.org/W2104710454, https://openalex.org/W3123247957, https://openalex.org/W6703865927, https://openalex.org/W6696329541, https://openalex.org/W2318226366, https://openalex.org/W3124926450, https://openalex.org/W1562373920, https://openalex.org/W2264918182, https://openalex.org/W2110245007, https://openalex.org/W6670692427, https://openalex.org/W565273688, https://openalex.org/W587144078, https://openalex.org/W1983819898, https://openalex.org/W3124874581, https://openalex.org/W2080387508, https://openalex.org/W2002885848, https://openalex.org/W2288612218, https://openalex.org/W2337490104 |
| referenced_works_count | 28 |
| abstract_inverted_index.a | 32, 69, 76, 182, 191, 204, 212 |
| abstract_inverted_index.In | 9 |
| abstract_inverted_index.We | 74 |
| abstract_inverted_index.an | 167 |
| abstract_inverted_index.as | 141 |
| abstract_inverted_index.by | 15, 52, 60, 87, 155, 211 |
| abstract_inverted_index.do | 66 |
| abstract_inverted_index.in | 27, 68, 122, 165, 175, 179 |
| abstract_inverted_index.is | 3, 85, 146, 169, 209 |
| abstract_inverted_index.of | 11, 17, 24, 37, 62, 81, 104, 115, 127, 139, 151, 181, 185, 188, 202 |
| abstract_inverted_index.so | 67 |
| abstract_inverted_index.to | 148, 195 |
| abstract_inverted_index.we | 30 |
| abstract_inverted_index.(to | 41 |
| abstract_inverted_index.The | 1 |
| abstract_inverted_index.and | 71, 78, 99, 118, 136 |
| abstract_inverted_index.any | 42, 50 |
| abstract_inverted_index.are | 103, 129, 163 |
| abstract_inverted_index.but | 110 |
| abstract_inverted_index.for | 21, 34, 171 |
| abstract_inverted_index.has | 190 |
| abstract_inverted_index.may | 65 |
| abstract_inverted_index.not | 48 |
| abstract_inverted_index.set | 184 |
| abstract_inverted_index.the | 12, 22, 35, 45, 112, 123, 156, 172, 176, 196 |
| abstract_inverted_index.use | 14 |
| abstract_inverted_index.who | 55 |
| abstract_inverted_index.This | 198, 207 |
| abstract_inverted_index.both | 96 |
| abstract_inverted_index.does | 47 |
| abstract_inverted_index.each | 187 |
| abstract_inverted_index.such | 38, 152 |
| abstract_inverted_index.that | 120 |
| abstract_inverted_index.will | 199 |
| abstract_inverted_index.with | 5, 108, 131 |
| abstract_inverted_index.broad | 77 |
| abstract_inverted_index.cases | 114 |
| abstract_inverted_index.claim | 7, 116 |
| abstract_inverted_index.entry | 174 |
| abstract_inverted_index.forms | 126, 138 |
| abstract_inverted_index.here. | 159 |
| abstract_inverted_index.large | 18 |
| abstract_inverted_index.means | 61 |
| abstract_inverted_index.often | 56 |
| abstract_inverted_index.other | 137 |
| abstract_inverted_index.paper | 2 |
| abstract_inverted_index.row-, | 133 |
| abstract_inverted_index.shape | 106 |
| abstract_inverted_index.shock | 89 |
| abstract_inverted_index.terms | 180 |
| abstract_inverted_index.those | 58 |
| abstract_inverted_index.usual | 113 |
| abstract_inverted_index.where | 83 |
| abstract_inverted_index.which | 53, 166, 189 |
| abstract_inverted_index.Arrays | 102 |
| abstract_inverted_index.Models | 91 |
| abstract_inverted_index.appear | 121 |
| abstract_inverted_index.arrays | 98 |
| abstract_inverted_index.cases. | 143 |
| abstract_inverted_index.cell-, | 132 |
| abstract_inverted_index.chance | 201 |
| abstract_inverted_index.common | 88 |
| abstract_inverted_index.effort | 145 |
| abstract_inverted_index.family | 80 |
| abstract_inverted_index.matrix | 178 |
| abstract_inverted_index.models | 157 |
| abstract_inverted_index.within | 97 |
| abstract_inverted_index.General | 125 |
| abstract_inverted_index.Indeed, | 44 |
| abstract_inverted_index.applied | 147 |
| abstract_inverted_index.arrays. | 8, 101 |
| abstract_inverted_index.between | 94, 100 |
| abstract_inverted_index.capital | 28 |
| abstract_inverted_index.develop | 31 |
| abstract_inverted_index.general | 105, 173 |
| abstract_inverted_index.holes), | 109 |
| abstract_inverted_index.include | 111 |
| abstract_inverted_index.induced | 86 |
| abstract_inverted_index.limited | 183 |
| abstract_inverted_index.manner. | 73 |
| abstract_inverted_index.matrix. | 206 |
| abstract_inverted_index.meaning | 194 |
| abstract_inverted_index.models, | 82 |
| abstract_inverted_index.special | 142 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.benefits | 26 |
| abstract_inverted_index.column-, | 134 |
| abstract_inverted_index.document | 49 |
| abstract_inverted_index.example. | 214 |
| abstract_inverted_index.examples | 162 |
| abstract_inverted_index.flexible | 79 |
| abstract_inverted_index.informed | 63 |
| abstract_inverted_index.matrices | 20, 153 |
| abstract_inverted_index.maximise | 200 |
| abstract_inverted_index.multiple | 6 |
| abstract_inverted_index.obtained | 170 |
| abstract_inverted_index.reliable | 205 |
| abstract_inverted_index.trapezia | 119 |
| abstract_inverted_index.(possibly | 107 |
| abstract_inverted_index.concerned | 4 |
| abstract_inverted_index.construct | 75 |
| abstract_inverted_index.examined, | 164 |
| abstract_inverted_index.extensive | 13 |
| abstract_inverted_index.generated | 154 |
| abstract_inverted_index.intuitive | 193 |
| abstract_inverted_index.numerical | 213 |
| abstract_inverted_index.obtaining | 203 |
| abstract_inverted_index.practical | 149 |
| abstract_inverted_index.realistic | 161 |
| abstract_inverted_index.triangles | 117 |
| abstract_inverted_index.Reasonably | 160 |
| abstract_inverted_index.considered | 130 |
| abstract_inverted_index.dependency | 84, 128, 140 |
| abstract_inverted_index.estimation | 23 |
| abstract_inverted_index.expression | 168 |
| abstract_inverted_index.guesswork, | 64 |
| abstract_inverted_index.literature | 46 |
| abstract_inverted_index.modelling, | 29 |
| abstract_inverted_index.structures | 40 |
| abstract_inverted_index.Substantial | 144 |
| abstract_inverted_index.components. | 90 |
| abstract_inverted_index.constructed | 158 |
| abstract_inverted_index.correlation | 19, 39, 177 |
| abstract_inverted_index.dimension). | 43 |
| abstract_inverted_index.disciplined | 70 |
| abstract_inverted_index.illustrated | 210 |
| abstract_inverted_index.incorporate | 92 |
| abstract_inverted_index.literature. | 124 |
| abstract_inverted_index.methodology | 33, 51 |
| abstract_inverted_index.parameters, | 186 |
| abstract_inverted_index.recognition | 10 |
| abstract_inverted_index.construction | 36, 208 |
| abstract_inverted_index.correlations | 59 |
| abstract_inverted_index.dependencies | 93 |
| abstract_inverted_index.observations | 95 |
| abstract_inverted_index.parameterise | 57 |
| abstract_inverted_index.parsimonious | 72 |
| abstract_inverted_index.practitioner. | 197 |
| abstract_inverted_index.practitioners | 16 |
| abstract_inverted_index.diagonal-wise, | 135 |
| abstract_inverted_index.interpretation | 150 |
| abstract_inverted_index.practitioners, | 54 |
| abstract_inverted_index.diversification | 25 |
| abstract_inverted_index.straightforward | 192 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5073481605 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I31746571 |
| citation_normalized_percentile.value | 0.87861039 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |