Communicating exploratory unsupervised machine learning analysis in age clustering for paediatric disease Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1136/bmjhci-2023-100963
Background Despite the increasing availability of electronic healthcare record (EHR) data and wide availability of plug-and-play machine learning (ML) Application Programming Interfaces, the adoption of data-driven decision-making within routine hospital workflows thus far, has remained limited. Through the lens of deriving clusters of diagnoses by age, this study investigated the type of ML analysis that can be performed using EHR data and how results could be communicated to lay stakeholders. Methods Observational EHR data from a tertiary paediatric hospital, containing 61 522 unique patients and 3315 unique ICD-10 diagnosis codes was used, after preprocessing. K-means clustering was applied to identify age distributions of patient diagnoses. The final model was selected using quantitative metrics and expert assessment of the clinical validity of the clusters. Additionally, uncertainty over preprocessing decisions was analysed. Findings Four age clusters of diseases were identified, broadly aligning to ages between: 0 and 1; 1 and 5; 5 and 13; 13 and 18. Diagnoses, within the clusters, aligned to existing knowledge regarding the propensity of presentation at different ages, and sequential clusters presented known disease progressions. The results validated similar methodologies within the literature. The impact of uncertainty induced by preprocessing decisions was large at the individual diagnoses but not at a population level. Strategies for mitigating, or communicating, this uncertainty were successfully demonstrated. Conclusion Unsupervised ML applied to EHR data identifies clinically relevant age distributions of diagnoses which can augment existing decision making. However, biases within healthcare datasets dramatically impact results if not appropriately mitigated or communicated.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1136/bmjhci-2023-100963
- OA Status
- gold
- Cited By
- 1
- References
- 13
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401074591
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401074591Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1136/bmjhci-2023-100963Digital Object Identifier
- Title
-
Communicating exploratory unsupervised machine learning analysis in age clustering for paediatric diseaseWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-01Full publication date if available
- Authors
-
Joshua Spear, Eleni Pissaridou, Stuart A Bowyer, William Bryant, Daniel Key, John Booth, Anastassia Spiridou, Spiros Denaxas, Rebecca Pope, Andrew M. Taylor, Harry Hemingway, Neil J. SebireList of authors in order
- Landing page
-
https://doi.org/10.1136/bmjhci-2023-100963Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1136/bmjhci-2023-100963Direct OA link when available
- Concepts
-
Medical diagnosis, Cluster analysis, Computer science, Workflow, Preprocessor, Population, Decision support system, Health care, Artificial intelligence, Machine learning, Data science, Data mining, Medicine, Database, Pathology, Environmental health, Economic growth, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
13Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401074591 |
|---|---|
| doi | https://doi.org/10.1136/bmjhci-2023-100963 |
| ids.doi | https://doi.org/10.1136/bmjhci-2023-100963 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39074912 |
| ids.openalex | https://openalex.org/W4401074591 |
| fwci | 0.63877855 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000069558 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Unsupervised Machine Learning |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D002648 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Child |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D057286 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Electronic Health Records |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D002675 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Child, Preschool |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D007223 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Infant |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000293 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Adolescent |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D016000 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Cluster Analysis |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D007231 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Infant, Newborn |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D008297 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Male |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D005260 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Female |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000367 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Age Factors |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D006801 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Humans |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000069558 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Unsupervised Machine Learning |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D002648 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Child |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D057286 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Electronic Health Records |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D002675 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Child, Preschool |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D007223 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Infant |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D000293 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Adolescent |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D016000 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Cluster Analysis |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D007231 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Infant, Newborn |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D008297 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Male |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D005260 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Female |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D000367 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Age Factors |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D006801 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Humans |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D000069558 |
| mesh[25].is_major_topic | True |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Unsupervised Machine Learning |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D002648 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Child |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D057286 |
| mesh[27].is_major_topic | True |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Electronic Health Records |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D002675 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Child, Preschool |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D007223 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Infant |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D000293 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Adolescent |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D016000 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Cluster Analysis |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D007231 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Infant, Newborn |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D008297 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Male |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D005260 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Female |
| mesh[35].qualifier_ui | |
| mesh[35].descriptor_ui | D000367 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | |
| mesh[35].descriptor_name | Age Factors |
| mesh[36].qualifier_ui | |
| mesh[36].descriptor_ui | D006801 |
| mesh[36].is_major_topic | False |
| mesh[36].qualifier_name | |
| mesh[36].descriptor_name | Humans |
| mesh[37].qualifier_ui | |
| mesh[37].descriptor_ui | D000069558 |
| mesh[37].is_major_topic | True |
| mesh[37].qualifier_name | |
| mesh[37].descriptor_name | Unsupervised Machine Learning |
| mesh[38].qualifier_ui | |
| mesh[38].descriptor_ui | D002648 |
| mesh[38].is_major_topic | False |
| mesh[38].qualifier_name | |
| mesh[38].descriptor_name | Child |
| mesh[39].qualifier_ui | |
| mesh[39].descriptor_ui | D057286 |
| mesh[39].is_major_topic | True |
| mesh[39].qualifier_name | |
| mesh[39].descriptor_name | Electronic Health Records |
| mesh[40].qualifier_ui | |
| mesh[40].descriptor_ui | D002675 |
| mesh[40].is_major_topic | False |
| mesh[40].qualifier_name | |
| mesh[40].descriptor_name | Child, Preschool |
| mesh[41].qualifier_ui | |
| mesh[41].descriptor_ui | D007223 |
| mesh[41].is_major_topic | False |
| mesh[41].qualifier_name | |
| mesh[41].descriptor_name | Infant |
| mesh[42].qualifier_ui | |
| mesh[42].descriptor_ui | D000293 |
| mesh[42].is_major_topic | False |
| mesh[42].qualifier_name | |
| mesh[42].descriptor_name | Adolescent |
| mesh[43].qualifier_ui | |
| mesh[43].descriptor_ui | D016000 |
| mesh[43].is_major_topic | False |
| mesh[43].qualifier_name | |
| mesh[43].descriptor_name | Cluster Analysis |
| mesh[44].qualifier_ui | |
| mesh[44].descriptor_ui | D007231 |
| mesh[44].is_major_topic | False |
| mesh[44].qualifier_name | |
| mesh[44].descriptor_name | Infant, Newborn |
| mesh[45].qualifier_ui | |
| mesh[45].descriptor_ui | D008297 |
| mesh[45].is_major_topic | False |
| mesh[45].qualifier_name | |
| mesh[45].descriptor_name | Male |
| mesh[46].qualifier_ui | |
| mesh[46].descriptor_ui | D005260 |
| mesh[46].is_major_topic | False |
| mesh[46].qualifier_name | |
| mesh[46].descriptor_name | Female |
| mesh[47].qualifier_ui | |
| mesh[47].descriptor_ui | D000367 |
| mesh[47].is_major_topic | False |
| mesh[47].qualifier_name | |
| mesh[47].descriptor_name | Age Factors |
| mesh[48].qualifier_ui | |
| mesh[48].descriptor_ui | D006801 |
| mesh[48].is_major_topic | False |
| mesh[48].qualifier_name | |
| mesh[48].descriptor_name | Humans |
| mesh[49].qualifier_ui | |
| mesh[49].descriptor_ui | D000069558 |
| mesh[49].is_major_topic | True |
| mesh[49].qualifier_name | |
| mesh[49].descriptor_name | Unsupervised Machine Learning |
| type | article |
| title | Communicating exploratory unsupervised machine learning analysis in age clustering for paediatric disease |
| awards[0].id | https://openalex.org/G1689241187 |
| awards[0].funder_id | https://openalex.org/F4320334626 |
| awards[0].display_name | |
| awards[0].funder_award_id | HDR-23004 |
| awards[0].funder_display_name | Medical Research Council |
| biblio.issue | 1 |
| biblio.volume | 31 |
| biblio.last_page | e100963 |
| biblio.first_page | e100963 |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| topics[1].id | https://openalex.org/T12246 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.995199978351593 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2713 |
| topics[1].subfield.display_name | Epidemiology |
| topics[1].display_name | Chronic Disease Management Strategies |
| topics[2].id | https://openalex.org/T14400 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.991100013256073 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3605 |
| topics[2].subfield.display_name | Health Information Management |
| topics[2].display_name | Medical Coding and Health Information |
| funders[0].id | https://openalex.org/F4320334626 |
| funders[0].ror | https://ror.org/03x94j517 |
| funders[0].display_name | Medical Research Council |
| funders[1].id | https://openalex.org/F4320336780 |
| funders[1].ror | |
| funders[1].display_name | NIHR Great Ormond Street Hospital Biomedical Research Centre |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | GBP |
| apc_list.value_usd | 2207 |
| apc_paid.value | 1800 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 2207 |
| concepts[0].id | https://openalex.org/C534262118 |
| concepts[0].level | 2 |
| concepts[0].score | 0.807409405708313 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q177719 |
| concepts[0].display_name | Medical diagnosis |
| concepts[1].id | https://openalex.org/C73555534 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7151495218276978 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[1].display_name | Cluster analysis |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6168352961540222 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C177212765 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5802651643753052 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q627335 |
| concepts[3].display_name | Workflow |
| concepts[4].id | https://openalex.org/C34736171 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5219378471374512 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q918333 |
| concepts[4].display_name | Preprocessor |
| concepts[5].id | https://openalex.org/C2908647359 |
| concepts[5].level | 2 |
| concepts[5].score | 0.47626301646232605 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[5].display_name | Population |
| concepts[6].id | https://openalex.org/C107327155 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4598868787288666 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q330268 |
| concepts[6].display_name | Decision support system |
| concepts[7].id | https://openalex.org/C160735492 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4573168158531189 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q31207 |
| concepts[7].display_name | Health care |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.45391160249710083 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4326433837413788 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C2522767166 |
| concepts[10].level | 1 |
| concepts[10].score | 0.41809120774269104 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[10].display_name | Data science |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3447820544242859 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C71924100 |
| concepts[12].level | 0 |
| concepts[12].score | 0.2811594307422638 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[12].display_name | Medicine |
| concepts[13].id | https://openalex.org/C77088390 |
| concepts[13].level | 1 |
| concepts[13].score | 0.13759979605674744 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[13].display_name | Database |
| concepts[14].id | https://openalex.org/C142724271 |
| concepts[14].level | 1 |
| concepts[14].score | 0.09033665060997009 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[14].display_name | Pathology |
| concepts[15].id | https://openalex.org/C99454951 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[15].display_name | Environmental health |
| concepts[16].id | https://openalex.org/C50522688 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[16].display_name | Economic growth |
| concepts[17].id | https://openalex.org/C162324750 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[17].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/medical-diagnosis |
| keywords[0].score | 0.807409405708313 |
| keywords[0].display_name | Medical diagnosis |
| keywords[1].id | https://openalex.org/keywords/cluster-analysis |
| keywords[1].score | 0.7151495218276978 |
| keywords[1].display_name | Cluster analysis |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6168352961540222 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/workflow |
| keywords[3].score | 0.5802651643753052 |
| keywords[3].display_name | Workflow |
| keywords[4].id | https://openalex.org/keywords/preprocessor |
| keywords[4].score | 0.5219378471374512 |
| keywords[4].display_name | Preprocessor |
| keywords[5].id | https://openalex.org/keywords/population |
| keywords[5].score | 0.47626301646232605 |
| keywords[5].display_name | Population |
| keywords[6].id | https://openalex.org/keywords/decision-support-system |
| keywords[6].score | 0.4598868787288666 |
| keywords[6].display_name | Decision support system |
| keywords[7].id | https://openalex.org/keywords/health-care |
| keywords[7].score | 0.4573168158531189 |
| keywords[7].display_name | Health care |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.45391160249710083 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.4326433837413788 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/data-science |
| keywords[10].score | 0.41809120774269104 |
| keywords[10].display_name | Data science |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.3447820544242859 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/medicine |
| keywords[12].score | 0.2811594307422638 |
| keywords[12].display_name | Medicine |
| keywords[13].id | https://openalex.org/keywords/database |
| keywords[13].score | 0.13759979605674744 |
| keywords[13].display_name | Database |
| keywords[14].id | https://openalex.org/keywords/pathology |
| keywords[14].score | 0.09033665060997009 |
| keywords[14].display_name | Pathology |
| language | en |
| locations[0].id | doi:10.1136/bmjhci-2023-100963 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210217889 |
| locations[0].source.issn | 2632-1009 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2632-1009 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | BMJ Health & Care Informatics |
| locations[0].source.host_organization | https://openalex.org/P4310319945 |
| locations[0].source.host_organization_name | BMJ |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319945 |
| locations[0].source.host_organization_lineage_names | BMJ |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | BMJ Health & Care Informatics |
| locations[0].landing_page_url | https://doi.org/10.1136/bmjhci-2023-100963 |
| locations[1].id | pmid:39074912 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | BMJ health & care informatics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39074912 |
| locations[2].id | pmh:oai:doaj.org/article:a9bf9f87e3fc4951ab86ba0213fac741 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | BMJ Health & Care Informatics, Vol 31, Iss 1 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/a9bf9f87e3fc4951ab86ba0213fac741 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11288139 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | BMJ Health Care Inform |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11288139 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5087289305 |
| authorships[0].author.orcid | https://orcid.org/0009-0005-9366-8185 |
| authorships[0].author.display_name | Joshua Spear |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210088407 |
| authorships[0].affiliations[0].raw_affiliation_string | NIHR GOSH BRC, London, UK |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I2800129641, https://openalex.org/I45129253 |
| authorships[0].affiliations[1].raw_affiliation_string | DRIVE, Great Ormond Street Hospital for Children, London, UK |
| authorships[0].institutions[0].id | https://openalex.org/I2800129641 |
| authorships[0].institutions[0].ror | https://ror.org/00zn2c847 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I2800129641, https://openalex.org/I2800349819 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Great Ormond Street Hospital |
| authorships[0].institutions[1].id | https://openalex.org/I4210088407 |
| authorships[0].institutions[1].ror | https://ror.org/004hydx84 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I1325675289, https://openalex.org/I34931013, https://openalex.org/I4210088407, https://openalex.org/I45129253 |
| authorships[0].institutions[1].country_code | GB |
| authorships[0].institutions[1].display_name | NIHR Moorfields Biomedical Research Centre |
| authorships[0].institutions[2].id | https://openalex.org/I45129253 |
| authorships[0].institutions[2].ror | https://ror.org/02jx3x895 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[0].institutions[2].country_code | GB |
| authorships[0].institutions[2].display_name | University College London |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Joshua William Spear |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | DRIVE, Great Ormond Street Hospital for Children, London, UK, NIHR GOSH BRC, London, UK |
| authorships[1].author.id | https://openalex.org/A5026012622 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Eleni Pissaridou |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210088407 |
| authorships[1].affiliations[0].raw_affiliation_string | NIHR GOSH BRC, London, UK |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I2800129641, https://openalex.org/I45129253 |
| authorships[1].affiliations[1].raw_affiliation_string | DRIVE, Great Ormond Street Hospital for Children, London, UK |
| authorships[1].institutions[0].id | https://openalex.org/I2800129641 |
| authorships[1].institutions[0].ror | https://ror.org/00zn2c847 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I2800129641, https://openalex.org/I2800349819 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Great Ormond Street Hospital |
| authorships[1].institutions[1].id | https://openalex.org/I4210088407 |
| authorships[1].institutions[1].ror | https://ror.org/004hydx84 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I1325675289, https://openalex.org/I34931013, https://openalex.org/I4210088407, https://openalex.org/I45129253 |
| authorships[1].institutions[1].country_code | GB |
| authorships[1].institutions[1].display_name | NIHR Moorfields Biomedical Research Centre |
| authorships[1].institutions[2].id | https://openalex.org/I45129253 |
| authorships[1].institutions[2].ror | https://ror.org/02jx3x895 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[1].institutions[2].country_code | GB |
| authorships[1].institutions[2].display_name | University College London |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Eleni Pissaridou |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | DRIVE, Great Ormond Street Hospital for Children, London, UK, NIHR GOSH BRC, London, UK |
| authorships[2].author.id | https://openalex.org/A5008455248 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2726-1705 |
| authorships[2].author.display_name | Stuart A Bowyer |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210088407 |
| authorships[2].affiliations[0].raw_affiliation_string | NIHR GOSH BRC, London, UK |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I2800129641, https://openalex.org/I45129253 |
| authorships[2].affiliations[1].raw_affiliation_string | DRIVE, Great Ormond Street Hospital for Children, London, UK |
| authorships[2].institutions[0].id | https://openalex.org/I2800129641 |
| authorships[2].institutions[0].ror | https://ror.org/00zn2c847 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I2800129641, https://openalex.org/I2800349819 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Great Ormond Street Hospital |
| authorships[2].institutions[1].id | https://openalex.org/I4210088407 |
| authorships[2].institutions[1].ror | https://ror.org/004hydx84 |
| authorships[2].institutions[1].type | facility |
| authorships[2].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I1325675289, https://openalex.org/I34931013, https://openalex.org/I4210088407, https://openalex.org/I45129253 |
| authorships[2].institutions[1].country_code | GB |
| authorships[2].institutions[1].display_name | NIHR Moorfields Biomedical Research Centre |
| authorships[2].institutions[2].id | https://openalex.org/I45129253 |
| authorships[2].institutions[2].ror | https://ror.org/02jx3x895 |
| authorships[2].institutions[2].type | education |
| authorships[2].institutions[2].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[2].institutions[2].country_code | GB |
| authorships[2].institutions[2].display_name | University College London |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Stuart Bowyer |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | DRIVE, Great Ormond Street Hospital for Children, London, UK, NIHR GOSH BRC, London, UK |
| authorships[3].author.id | https://openalex.org/A5045159230 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2135-0662 |
| authorships[3].author.display_name | William Bryant |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210088407 |
| authorships[3].affiliations[0].raw_affiliation_string | NIHR GOSH BRC, London, UK |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I2800129641, https://openalex.org/I45129253 |
| authorships[3].affiliations[1].raw_affiliation_string | DRIVE, Great Ormond Street Hospital for Children, London, UK |
| authorships[3].institutions[0].id | https://openalex.org/I2800129641 |
| authorships[3].institutions[0].ror | https://ror.org/00zn2c847 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I2800129641, https://openalex.org/I2800349819 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | Great Ormond Street Hospital |
| authorships[3].institutions[1].id | https://openalex.org/I4210088407 |
| authorships[3].institutions[1].ror | https://ror.org/004hydx84 |
| authorships[3].institutions[1].type | facility |
| authorships[3].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I1325675289, https://openalex.org/I34931013, https://openalex.org/I4210088407, https://openalex.org/I45129253 |
| authorships[3].institutions[1].country_code | GB |
| authorships[3].institutions[1].display_name | NIHR Moorfields Biomedical Research Centre |
| authorships[3].institutions[2].id | https://openalex.org/I45129253 |
| authorships[3].institutions[2].ror | https://ror.org/02jx3x895 |
| authorships[3].institutions[2].type | education |
| authorships[3].institutions[2].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[3].institutions[2].country_code | GB |
| authorships[3].institutions[2].display_name | University College London |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | William A Bryant |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | DRIVE, Great Ormond Street Hospital for Children, London, UK, NIHR GOSH BRC, London, UK |
| authorships[4].author.id | https://openalex.org/A5025962709 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9559-1784 |
| authorships[4].author.display_name | Daniel Key |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210088407 |
| authorships[4].affiliations[0].raw_affiliation_string | NIHR GOSH BRC, London, UK |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I2800129641, https://openalex.org/I45129253 |
| authorships[4].affiliations[1].raw_affiliation_string | DRIVE, Great Ormond Street Hospital for Children, London, UK |
| authorships[4].institutions[0].id | https://openalex.org/I2800129641 |
| authorships[4].institutions[0].ror | https://ror.org/00zn2c847 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I2800129641, https://openalex.org/I2800349819 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | Great Ormond Street Hospital |
| authorships[4].institutions[1].id | https://openalex.org/I4210088407 |
| authorships[4].institutions[1].ror | https://ror.org/004hydx84 |
| authorships[4].institutions[1].type | facility |
| authorships[4].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I1325675289, https://openalex.org/I34931013, https://openalex.org/I4210088407, https://openalex.org/I45129253 |
| authorships[4].institutions[1].country_code | GB |
| authorships[4].institutions[1].display_name | NIHR Moorfields Biomedical Research Centre |
| authorships[4].institutions[2].id | https://openalex.org/I45129253 |
| authorships[4].institutions[2].ror | https://ror.org/02jx3x895 |
| authorships[4].institutions[2].type | education |
| authorships[4].institutions[2].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[4].institutions[2].country_code | GB |
| authorships[4].institutions[2].display_name | University College London |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Daniel Key |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | DRIVE, Great Ormond Street Hospital for Children, London, UK, NIHR GOSH BRC, London, UK |
| authorships[5].author.id | https://openalex.org/A5038122440 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4357-1324 |
| authorships[5].author.display_name | John Booth |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210088407 |
| authorships[5].affiliations[0].raw_affiliation_string | NIHR GOSH BRC, London, UK |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I2800129641, https://openalex.org/I45129253 |
| authorships[5].affiliations[1].raw_affiliation_string | DRIVE, Great Ormond Street Hospital for Children, London, UK |
| authorships[5].institutions[0].id | https://openalex.org/I2800129641 |
| authorships[5].institutions[0].ror | https://ror.org/00zn2c847 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I2800129641, https://openalex.org/I2800349819 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | Great Ormond Street Hospital |
| authorships[5].institutions[1].id | https://openalex.org/I4210088407 |
| authorships[5].institutions[1].ror | https://ror.org/004hydx84 |
| authorships[5].institutions[1].type | facility |
| authorships[5].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I1325675289, https://openalex.org/I34931013, https://openalex.org/I4210088407, https://openalex.org/I45129253 |
| authorships[5].institutions[1].country_code | GB |
| authorships[5].institutions[1].display_name | NIHR Moorfields Biomedical Research Centre |
| authorships[5].institutions[2].id | https://openalex.org/I45129253 |
| authorships[5].institutions[2].ror | https://ror.org/02jx3x895 |
| authorships[5].institutions[2].type | education |
| authorships[5].institutions[2].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[5].institutions[2].country_code | GB |
| authorships[5].institutions[2].display_name | University College London |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | John Booth |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | DRIVE, Great Ormond Street Hospital for Children, London, UK, NIHR GOSH BRC, London, UK |
| authorships[6].author.id | https://openalex.org/A5003953097 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6576-0244 |
| authorships[6].author.display_name | Anastassia Spiridou |
| authorships[6].countries | GB |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210088407 |
| authorships[6].affiliations[0].raw_affiliation_string | NIHR GOSH BRC, London, UK |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I2800129641, https://openalex.org/I45129253 |
| authorships[6].affiliations[1].raw_affiliation_string | DRIVE, Great Ormond Street Hospital for Children, London, UK |
| authorships[6].institutions[0].id | https://openalex.org/I2800129641 |
| authorships[6].institutions[0].ror | https://ror.org/00zn2c847 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I2800129641, https://openalex.org/I2800349819 |
| authorships[6].institutions[0].country_code | GB |
| authorships[6].institutions[0].display_name | Great Ormond Street Hospital |
| authorships[6].institutions[1].id | https://openalex.org/I4210088407 |
| authorships[6].institutions[1].ror | https://ror.org/004hydx84 |
| authorships[6].institutions[1].type | facility |
| authorships[6].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I1325675289, https://openalex.org/I34931013, https://openalex.org/I4210088407, https://openalex.org/I45129253 |
| authorships[6].institutions[1].country_code | GB |
| authorships[6].institutions[1].display_name | NIHR Moorfields Biomedical Research Centre |
| authorships[6].institutions[2].id | https://openalex.org/I45129253 |
| authorships[6].institutions[2].ror | https://ror.org/02jx3x895 |
| authorships[6].institutions[2].type | education |
| authorships[6].institutions[2].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[6].institutions[2].country_code | GB |
| authorships[6].institutions[2].display_name | University College London |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Anastasia Spiridou |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | DRIVE, Great Ormond Street Hospital for Children, London, UK, NIHR GOSH BRC, London, UK |
| authorships[7].author.id | https://openalex.org/A5073010916 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-9612-7791 |
| authorships[7].author.display_name | Spiros Denaxas |
| authorships[7].countries | GB |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[7].affiliations[0].raw_affiliation_string | Institute of Health Informatics, University College London, London, UK |
| authorships[7].affiliations[1].raw_affiliation_string | BHF Data Science Centre, London, UK |
| authorships[7].institutions[0].id | https://openalex.org/I45129253 |
| authorships[7].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[7].institutions[0].country_code | GB |
| authorships[7].institutions[0].display_name | University College London |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Spiros Denaxas |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | BHF Data Science Centre, London, UK, Institute of Health Informatics, University College London, London, UK |
| authorships[8].author.id | https://openalex.org/A5008687314 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-6889-589X |
| authorships[8].author.display_name | Rebecca Pope |
| authorships[8].countries | GB |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[8].affiliations[0].raw_affiliation_string | Institute of Child Health, University College London, London, UK |
| authorships[8].institutions[0].id | https://openalex.org/I45129253 |
| authorships[8].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[8].institutions[0].country_code | GB |
| authorships[8].institutions[0].display_name | University College London |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Rebecca Pope |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Institute of Child Health, University College London, London, UK |
| authorships[9].author.id | https://openalex.org/A5013141692 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-4194-7113 |
| authorships[9].author.display_name | Andrew M. Taylor |
| authorships[9].countries | GB |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I2800129641, https://openalex.org/I45129253 |
| authorships[9].affiliations[0].raw_affiliation_string | DRIVE, Great Ormond Street Hospital for Children, London, UK |
| authorships[9].affiliations[1].institution_ids | https://openalex.org/I45129253 |
| authorships[9].affiliations[1].raw_affiliation_string | Institute of Cardiovascular Science, University College London, London, UK |
| authorships[9].institutions[0].id | https://openalex.org/I2800129641 |
| authorships[9].institutions[0].ror | https://ror.org/00zn2c847 |
| authorships[9].institutions[0].type | healthcare |
| authorships[9].institutions[0].lineage | https://openalex.org/I2800129641, https://openalex.org/I2800349819 |
| authorships[9].institutions[0].country_code | GB |
| authorships[9].institutions[0].display_name | Great Ormond Street Hospital |
| authorships[9].institutions[1].id | https://openalex.org/I45129253 |
| authorships[9].institutions[1].ror | https://ror.org/02jx3x895 |
| authorships[9].institutions[1].type | education |
| authorships[9].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[9].institutions[1].country_code | GB |
| authorships[9].institutions[1].display_name | University College London |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Andrew M Taylor |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | DRIVE, Great Ormond Street Hospital for Children, London, UK, Institute of Cardiovascular Science, University College London, London, UK |
| authorships[10].author.id | https://openalex.org/A5101881419 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-2279-0624 |
| authorships[10].author.display_name | Harry Hemingway |
| authorships[10].countries | GB |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[10].affiliations[0].raw_affiliation_string | Institute of Health Informatics, University College London, London, UK |
| authorships[10].affiliations[1].institution_ids | https://openalex.org/I2800129641, https://openalex.org/I45129253 |
| authorships[10].affiliations[1].raw_affiliation_string | DRIVE, Great Ormond Street Hospital for Children, London, UK |
| authorships[10].institutions[0].id | https://openalex.org/I2800129641 |
| authorships[10].institutions[0].ror | https://ror.org/00zn2c847 |
| authorships[10].institutions[0].type | healthcare |
| authorships[10].institutions[0].lineage | https://openalex.org/I2800129641, https://openalex.org/I2800349819 |
| authorships[10].institutions[0].country_code | GB |
| authorships[10].institutions[0].display_name | Great Ormond Street Hospital |
| authorships[10].institutions[1].id | https://openalex.org/I45129253 |
| authorships[10].institutions[1].ror | https://ror.org/02jx3x895 |
| authorships[10].institutions[1].type | education |
| authorships[10].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[10].institutions[1].country_code | GB |
| authorships[10].institutions[1].display_name | University College London |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Harry Hemingway |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | DRIVE, Great Ormond Street Hospital for Children, London, UK, Institute of Health Informatics, University College London, London, UK |
| authorships[11].author.id | https://openalex.org/A5037501835 |
| authorships[11].author.orcid | https://orcid.org/0000-0001-5348-9063 |
| authorships[11].author.display_name | Neil J. Sebire |
| authorships[11].countries | GB |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[11].affiliations[0].raw_affiliation_string | Institute of Child Health, University College London, London, UK |
| authorships[11].affiliations[1].institution_ids | https://openalex.org/I2800129641, https://openalex.org/I45129253 |
| authorships[11].affiliations[1].raw_affiliation_string | DRIVE, Great Ormond Street Hospital for Children, London, UK |
| authorships[11].institutions[0].id | https://openalex.org/I2800129641 |
| authorships[11].institutions[0].ror | https://ror.org/00zn2c847 |
| authorships[11].institutions[0].type | healthcare |
| authorships[11].institutions[0].lineage | https://openalex.org/I2800129641, https://openalex.org/I2800349819 |
| authorships[11].institutions[0].country_code | GB |
| authorships[11].institutions[0].display_name | Great Ormond Street Hospital |
| authorships[11].institutions[1].id | https://openalex.org/I45129253 |
| authorships[11].institutions[1].ror | https://ror.org/02jx3x895 |
| authorships[11].institutions[1].type | education |
| authorships[11].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[11].institutions[1].country_code | GB |
| authorships[11].institutions[1].display_name | University College London |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Neil J Sebire |
| authorships[11].is_corresponding | True |
| authorships[11].raw_affiliation_strings | DRIVE, Great Ormond Street Hospital for Children, London, UK, Institute of Child Health, University College London, London, UK |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1136/bmjhci-2023-100963 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Communicating exploratory unsupervised machine learning analysis in age clustering for paediatric disease |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| related_works | https://openalex.org/W1981780420, https://openalex.org/W2182707996, https://openalex.org/W45233828, https://openalex.org/W2964988449, https://openalex.org/W2397952901, https://openalex.org/W2029380707, https://openalex.org/W4255934811, https://openalex.org/W2465382974, https://openalex.org/W2010229520, https://openalex.org/W1629127207 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1136/bmjhci-2023-100963 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210217889 |
| best_oa_location.source.issn | 2632-1009 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2632-1009 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | BMJ Health & Care Informatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310319945 |
| best_oa_location.source.host_organization_name | BMJ |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319945 |
| best_oa_location.source.host_organization_lineage_names | BMJ |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | BMJ Health & Care Informatics |
| best_oa_location.landing_page_url | https://doi.org/10.1136/bmjhci-2023-100963 |
| primary_location.id | doi:10.1136/bmjhci-2023-100963 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210217889 |
| primary_location.source.issn | 2632-1009 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2632-1009 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | BMJ Health & Care Informatics |
| primary_location.source.host_organization | https://openalex.org/P4310319945 |
| primary_location.source.host_organization_name | BMJ |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319945 |
| primary_location.source.host_organization_lineage_names | BMJ |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | BMJ Health & Care Informatics |
| primary_location.landing_page_url | https://doi.org/10.1136/bmjhci-2023-100963 |
| publication_date | 2024-07-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2559646245, https://openalex.org/W2970137930, https://openalex.org/W4292541600, https://openalex.org/W2991126150, https://openalex.org/W2955930956, https://openalex.org/W2943548856, https://openalex.org/W2805467192, https://openalex.org/W2284851926, https://openalex.org/W1951842251, https://openalex.org/W2144539486, https://openalex.org/W2944890781, https://openalex.org/W1987971958, https://openalex.org/W2557074642 |
| referenced_works_count | 13 |
| abstract_inverted_index.0 | 143 |
| abstract_inverted_index.1 | 146 |
| abstract_inverted_index.5 | 149 |
| abstract_inverted_index.a | 75, 203 |
| abstract_inverted_index.13 | 152 |
| abstract_inverted_index.1; | 145 |
| abstract_inverted_index.5; | 148 |
| abstract_inverted_index.61 | 80 |
| abstract_inverted_index.ML | 52, 218 |
| abstract_inverted_index.at | 168, 196, 202 |
| abstract_inverted_index.be | 56, 65 |
| abstract_inverted_index.by | 44, 191 |
| abstract_inverted_index.if | 244 |
| abstract_inverted_index.of | 5, 14, 24, 39, 42, 51, 102, 116, 120, 134, 166, 188, 228 |
| abstract_inverted_index.or | 209, 248 |
| abstract_inverted_index.to | 67, 98, 140, 160, 220 |
| abstract_inverted_index.13; | 151 |
| abstract_inverted_index.18. | 154 |
| abstract_inverted_index.522 | 81 |
| abstract_inverted_index.EHR | 59, 72, 221 |
| abstract_inverted_index.The | 105, 178, 186 |
| abstract_inverted_index.age | 100, 132, 226 |
| abstract_inverted_index.and | 11, 61, 84, 113, 144, 147, 150, 153, 171 |
| abstract_inverted_index.but | 200 |
| abstract_inverted_index.can | 55, 231 |
| abstract_inverted_index.for | 207 |
| abstract_inverted_index.has | 33 |
| abstract_inverted_index.how | 62 |
| abstract_inverted_index.lay | 68 |
| abstract_inverted_index.not | 201, 245 |
| abstract_inverted_index.the | 2, 22, 37, 49, 117, 121, 157, 164, 184, 197 |
| abstract_inverted_index.was | 90, 96, 108, 128, 194 |
| abstract_inverted_index.(ML) | 18 |
| abstract_inverted_index.3315 | 85 |
| abstract_inverted_index.Four | 131 |
| abstract_inverted_index.age, | 45 |
| abstract_inverted_index.ages | 141 |
| abstract_inverted_index.data | 10, 60, 73, 222 |
| abstract_inverted_index.far, | 32 |
| abstract_inverted_index.from | 74 |
| abstract_inverted_index.lens | 38 |
| abstract_inverted_index.over | 125 |
| abstract_inverted_index.that | 54 |
| abstract_inverted_index.this | 46, 211 |
| abstract_inverted_index.thus | 31 |
| abstract_inverted_index.type | 50 |
| abstract_inverted_index.were | 136, 213 |
| abstract_inverted_index.wide | 12 |
| abstract_inverted_index.(EHR) | 9 |
| abstract_inverted_index.after | 92 |
| abstract_inverted_index.ages, | 170 |
| abstract_inverted_index.codes | 89 |
| abstract_inverted_index.could | 64 |
| abstract_inverted_index.final | 106 |
| abstract_inverted_index.known | 175 |
| abstract_inverted_index.large | 195 |
| abstract_inverted_index.model | 107 |
| abstract_inverted_index.study | 47 |
| abstract_inverted_index.used, | 91 |
| abstract_inverted_index.using | 58, 110 |
| abstract_inverted_index.which | 230 |
| abstract_inverted_index.ICD-10 | 87 |
| abstract_inverted_index.biases | 237 |
| abstract_inverted_index.expert | 114 |
| abstract_inverted_index.impact | 187, 242 |
| abstract_inverted_index.level. | 205 |
| abstract_inverted_index.record | 8 |
| abstract_inverted_index.unique | 82, 86 |
| abstract_inverted_index.within | 27, 156, 183, 238 |
| abstract_inverted_index.Despite | 1 |
| abstract_inverted_index.K-means | 94 |
| abstract_inverted_index.Methods | 70 |
| abstract_inverted_index.Through | 36 |
| abstract_inverted_index.aligned | 159 |
| abstract_inverted_index.applied | 97, 219 |
| abstract_inverted_index.augment | 232 |
| abstract_inverted_index.broadly | 138 |
| abstract_inverted_index.disease | 176 |
| abstract_inverted_index.induced | 190 |
| abstract_inverted_index.machine | 16 |
| abstract_inverted_index.making. | 235 |
| abstract_inverted_index.metrics | 112 |
| abstract_inverted_index.patient | 103 |
| abstract_inverted_index.results | 63, 179, 243 |
| abstract_inverted_index.routine | 28 |
| abstract_inverted_index.similar | 181 |
| abstract_inverted_index.Findings | 130 |
| abstract_inverted_index.However, | 236 |
| abstract_inverted_index.adoption | 23 |
| abstract_inverted_index.aligning | 139 |
| abstract_inverted_index.analysis | 53 |
| abstract_inverted_index.between: | 142 |
| abstract_inverted_index.clinical | 118 |
| abstract_inverted_index.clusters | 41, 133, 173 |
| abstract_inverted_index.datasets | 240 |
| abstract_inverted_index.decision | 234 |
| abstract_inverted_index.deriving | 40 |
| abstract_inverted_index.diseases | 135 |
| abstract_inverted_index.existing | 161, 233 |
| abstract_inverted_index.hospital | 29 |
| abstract_inverted_index.identify | 99 |
| abstract_inverted_index.learning | 17 |
| abstract_inverted_index.limited. | 35 |
| abstract_inverted_index.patients | 83 |
| abstract_inverted_index.relevant | 225 |
| abstract_inverted_index.remained | 34 |
| abstract_inverted_index.selected | 109 |
| abstract_inverted_index.tertiary | 76 |
| abstract_inverted_index.validity | 119 |
| abstract_inverted_index.analysed. | 129 |
| abstract_inverted_index.clusters, | 158 |
| abstract_inverted_index.clusters. | 122 |
| abstract_inverted_index.decisions | 127, 193 |
| abstract_inverted_index.diagnoses | 43, 199, 229 |
| abstract_inverted_index.diagnosis | 88 |
| abstract_inverted_index.different | 169 |
| abstract_inverted_index.hospital, | 78 |
| abstract_inverted_index.knowledge | 162 |
| abstract_inverted_index.mitigated | 247 |
| abstract_inverted_index.performed | 57 |
| abstract_inverted_index.presented | 174 |
| abstract_inverted_index.regarding | 163 |
| abstract_inverted_index.validated | 180 |
| abstract_inverted_index.workflows | 30 |
| abstract_inverted_index.Background | 0 |
| abstract_inverted_index.Conclusion | 216 |
| abstract_inverted_index.Diagnoses, | 155 |
| abstract_inverted_index.Strategies | 206 |
| abstract_inverted_index.assessment | 115 |
| abstract_inverted_index.clinically | 224 |
| abstract_inverted_index.clustering | 95 |
| abstract_inverted_index.containing | 79 |
| abstract_inverted_index.diagnoses. | 104 |
| abstract_inverted_index.electronic | 6 |
| abstract_inverted_index.healthcare | 7, 239 |
| abstract_inverted_index.identifies | 223 |
| abstract_inverted_index.increasing | 3 |
| abstract_inverted_index.individual | 198 |
| abstract_inverted_index.paediatric | 77 |
| abstract_inverted_index.population | 204 |
| abstract_inverted_index.propensity | 165 |
| abstract_inverted_index.sequential | 172 |
| abstract_inverted_index.Application | 19 |
| abstract_inverted_index.Interfaces, | 21 |
| abstract_inverted_index.Programming | 20 |
| abstract_inverted_index.data-driven | 25 |
| abstract_inverted_index.identified, | 137 |
| abstract_inverted_index.literature. | 185 |
| abstract_inverted_index.mitigating, | 208 |
| abstract_inverted_index.uncertainty | 124, 189, 212 |
| abstract_inverted_index.Unsupervised | 217 |
| abstract_inverted_index.availability | 4, 13 |
| abstract_inverted_index.communicated | 66 |
| abstract_inverted_index.dramatically | 241 |
| abstract_inverted_index.investigated | 48 |
| abstract_inverted_index.presentation | 167 |
| abstract_inverted_index.quantitative | 111 |
| abstract_inverted_index.successfully | 214 |
| abstract_inverted_index.Additionally, | 123 |
| abstract_inverted_index.Observational | 71 |
| abstract_inverted_index.appropriately | 246 |
| abstract_inverted_index.communicated. | 249 |
| abstract_inverted_index.demonstrated. | 215 |
| abstract_inverted_index.distributions | 101, 227 |
| abstract_inverted_index.methodologies | 182 |
| abstract_inverted_index.plug-and-play | 15 |
| abstract_inverted_index.preprocessing | 126, 192 |
| abstract_inverted_index.progressions. | 177 |
| abstract_inverted_index.stakeholders. | 69 |
| abstract_inverted_index.communicating, | 210 |
| abstract_inverted_index.preprocessing. | 93 |
| abstract_inverted_index.decision-making | 26 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5037501835 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 12 |
| corresponding_institution_ids | https://openalex.org/I2800129641, https://openalex.org/I45129253 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.6700000166893005 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.68939242 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |