Community Mobility and COVID-19 Dynamics in Jakarta, Indonesia Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/ijerph19116671
In response to the COVID-19 pandemic, mobile-phone data on population movement became publicly available, including Google Community Mobility Reports (CMR). This study explored the utilization of mobility data to predict COVID-19 dynamics in Jakarta, Indonesia. We acquired aggregated and anonymized mobility data sets from 15 February to 31 December 2020. Three statistical models were explored: Poisson Regression Generalized Linear Model (GLM), Negative Binomial Regression GLM, and Multiple Linear Regression (MLR). Due to multicollinearity, three categories were reduced into one single index using Principal Component Analysis (PCA). Multiple Linear Regression with variable adjustments using PCA was the best-fit model, explaining 52% of COVID-19 cases in Jakarta (R-Square: 0.52; p < 0.05). This study found that different types of mobility were significant predictors for COVID-19 cases and have different levels of impact on COVID-19 dynamics in Jakarta, with the highest observed in “grocery and pharmacy” (4.12%). This study demonstrates the practicality of using CMR data to help policymakers in decision making and policy formulation, especially when there are limited data available, and can be used to improve health system readiness by anticipating case surge, such as in the places with a high potential for transmission risk and during seasonal events.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/ijerph19116671
- https://www.mdpi.com/1660-4601/19/11/6671/pdf?version=1653907246
- OA Status
- gold
- Cited By
- 20
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4282036145
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4282036145Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/ijerph19116671Digital Object Identifier
- Title
-
Community Mobility and COVID-19 Dynamics in Jakarta, IndonesiaWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-05-30Full publication date if available
- Authors
-
Ratih Oktri Nanda, Aldilas Achmad Nursetyo, Aditya Lia Ramadona, Muhammad Ali Imron, Anis Fuad, Althaf Setyawan, Riris Andono AhmadList of authors in order
- Landing page
-
https://doi.org/10.3390/ijerph19116671Publisher landing page
- PDF URL
-
https://www.mdpi.com/1660-4601/19/11/6671/pdf?version=1653907246Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1660-4601/19/11/6671/pdf?version=1653907246Direct OA link when available
- Concepts
-
Poisson regression, Negative binomial distribution, Multicollinearity, Statistics, Count data, Econometrics, Generalized linear model, Linear regression, Regression analysis, Population, Coronavirus disease 2019 (COVID-19), Poisson distribution, Pandemic, Principal component analysis, Variance inflation factor, Geography, Mathematics, Medicine, Environmental health, Disease, Infectious disease (medical specialty), PathologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
20Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 7, 2023: 6, 2022: 4, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4282036145 |
|---|---|
| doi | https://doi.org/10.3390/ijerph19116671 |
| ids.doi | https://doi.org/10.3390/ijerph19116671 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35682252 |
| ids.openalex | https://openalex.org/W4282036145 |
| fwci | 3.31248739 |
| mesh[0].qualifier_ui | Q000453 |
| mesh[0].descriptor_ui | D000086382 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | epidemiology |
| mesh[0].descriptor_name | COVID-19 |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D040421 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Cell Phone |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D006801 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Humans |
| mesh[3].qualifier_ui | Q000453 |
| mesh[3].descriptor_ui | D007214 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | epidemiology |
| mesh[3].descriptor_name | Indonesia |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D015233 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Models, Statistical |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D058873 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Pandemics |
| mesh[6].qualifier_ui | Q000453 |
| mesh[6].descriptor_ui | D000086382 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | epidemiology |
| mesh[6].descriptor_name | COVID-19 |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D040421 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Cell Phone |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D006801 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Humans |
| mesh[9].qualifier_ui | Q000453 |
| mesh[9].descriptor_ui | D007214 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | epidemiology |
| mesh[9].descriptor_name | Indonesia |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D015233 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Models, Statistical |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D058873 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Pandemics |
| type | article |
| title | Community Mobility and COVID-19 Dynamics in Jakarta, Indonesia |
| biblio.issue | 11 |
| biblio.volume | 19 |
| biblio.last_page | 6671 |
| biblio.first_page | 6671 |
| topics[0].id | https://openalex.org/T10410 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2611 |
| topics[0].subfield.display_name | Modeling and Simulation |
| topics[0].display_name | COVID-19 epidemiological studies |
| topics[1].id | https://openalex.org/T11819 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9952999949455261 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2713 |
| topics[1].subfield.display_name | Epidemiology |
| topics[1].display_name | Data-Driven Disease Surveillance |
| topics[2].id | https://openalex.org/T11711 |
| topics[2].field.id | https://openalex.org/fields/20 |
| topics[2].field.display_name | Economics, Econometrics and Finance |
| topics[2].score | 0.9869999885559082 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2002 |
| topics[2].subfield.display_name | Economics and Econometrics |
| topics[2].display_name | COVID-19 Pandemic Impacts |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C73269764 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7201749682426453 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q954529 |
| concepts[0].display_name | Poisson regression |
| concepts[1].id | https://openalex.org/C199335787 |
| concepts[1].level | 3 |
| concepts[1].score | 0.662894070148468 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q743364 |
| concepts[1].display_name | Negative binomial distribution |
| concepts[2].id | https://openalex.org/C189285262 |
| concepts[2].level | 3 |
| concepts[2].score | 0.621807336807251 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1332350 |
| concepts[2].display_name | Multicollinearity |
| concepts[3].id | https://openalex.org/C105795698 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5844992995262146 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[3].display_name | Statistics |
| concepts[4].id | https://openalex.org/C33643355 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5533051490783691 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5176731 |
| concepts[4].display_name | Count data |
| concepts[5].id | https://openalex.org/C149782125 |
| concepts[5].level | 1 |
| concepts[5].score | 0.536427915096283 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[5].display_name | Econometrics |
| concepts[6].id | https://openalex.org/C41587187 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5112991333007812 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1501882 |
| concepts[6].display_name | Generalized linear model |
| concepts[7].id | https://openalex.org/C48921125 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5031952261924744 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q10861030 |
| concepts[7].display_name | Linear regression |
| concepts[8].id | https://openalex.org/C152877465 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4788265526294708 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[8].display_name | Regression analysis |
| concepts[9].id | https://openalex.org/C2908647359 |
| concepts[9].level | 2 |
| concepts[9].score | 0.46327659487724304 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[9].display_name | Population |
| concepts[10].id | https://openalex.org/C3008058167 |
| concepts[10].level | 4 |
| concepts[10].score | 0.46125850081443787 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[10].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[11].id | https://openalex.org/C100906024 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4368540644645691 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q205692 |
| concepts[11].display_name | Poisson distribution |
| concepts[12].id | https://openalex.org/C89623803 |
| concepts[12].level | 5 |
| concepts[12].score | 0.4302186369895935 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12184 |
| concepts[12].display_name | Pandemic |
| concepts[13].id | https://openalex.org/C27438332 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4230501651763916 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2873 |
| concepts[13].display_name | Principal component analysis |
| concepts[14].id | https://openalex.org/C152732102 |
| concepts[14].level | 4 |
| concepts[14].score | 0.42182812094688416 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q13434396 |
| concepts[14].display_name | Variance inflation factor |
| concepts[15].id | https://openalex.org/C205649164 |
| concepts[15].level | 0 |
| concepts[15].score | 0.3487432599067688 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[15].display_name | Geography |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.3342980146408081 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| concepts[17].id | https://openalex.org/C71924100 |
| concepts[17].level | 0 |
| concepts[17].score | 0.25848388671875 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[17].display_name | Medicine |
| concepts[18].id | https://openalex.org/C99454951 |
| concepts[18].level | 1 |
| concepts[18].score | 0.21009066700935364 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[18].display_name | Environmental health |
| concepts[19].id | https://openalex.org/C2779134260 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[19].display_name | Disease |
| concepts[20].id | https://openalex.org/C524204448 |
| concepts[20].level | 3 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[20].display_name | Infectious disease (medical specialty) |
| concepts[21].id | https://openalex.org/C142724271 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[21].display_name | Pathology |
| keywords[0].id | https://openalex.org/keywords/poisson-regression |
| keywords[0].score | 0.7201749682426453 |
| keywords[0].display_name | Poisson regression |
| keywords[1].id | https://openalex.org/keywords/negative-binomial-distribution |
| keywords[1].score | 0.662894070148468 |
| keywords[1].display_name | Negative binomial distribution |
| keywords[2].id | https://openalex.org/keywords/multicollinearity |
| keywords[2].score | 0.621807336807251 |
| keywords[2].display_name | Multicollinearity |
| keywords[3].id | https://openalex.org/keywords/statistics |
| keywords[3].score | 0.5844992995262146 |
| keywords[3].display_name | Statistics |
| keywords[4].id | https://openalex.org/keywords/count-data |
| keywords[4].score | 0.5533051490783691 |
| keywords[4].display_name | Count data |
| keywords[5].id | https://openalex.org/keywords/econometrics |
| keywords[5].score | 0.536427915096283 |
| keywords[5].display_name | Econometrics |
| keywords[6].id | https://openalex.org/keywords/generalized-linear-model |
| keywords[6].score | 0.5112991333007812 |
| keywords[6].display_name | Generalized linear model |
| keywords[7].id | https://openalex.org/keywords/linear-regression |
| keywords[7].score | 0.5031952261924744 |
| keywords[7].display_name | Linear regression |
| keywords[8].id | https://openalex.org/keywords/regression-analysis |
| keywords[8].score | 0.4788265526294708 |
| keywords[8].display_name | Regression analysis |
| keywords[9].id | https://openalex.org/keywords/population |
| keywords[9].score | 0.46327659487724304 |
| keywords[9].display_name | Population |
| keywords[10].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[10].score | 0.46125850081443787 |
| keywords[10].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[11].id | https://openalex.org/keywords/poisson-distribution |
| keywords[11].score | 0.4368540644645691 |
| keywords[11].display_name | Poisson distribution |
| keywords[12].id | https://openalex.org/keywords/pandemic |
| keywords[12].score | 0.4302186369895935 |
| keywords[12].display_name | Pandemic |
| keywords[13].id | https://openalex.org/keywords/principal-component-analysis |
| keywords[13].score | 0.4230501651763916 |
| keywords[13].display_name | Principal component analysis |
| keywords[14].id | https://openalex.org/keywords/variance-inflation-factor |
| keywords[14].score | 0.42182812094688416 |
| keywords[14].display_name | Variance inflation factor |
| keywords[15].id | https://openalex.org/keywords/geography |
| keywords[15].score | 0.3487432599067688 |
| keywords[15].display_name | Geography |
| keywords[16].id | https://openalex.org/keywords/mathematics |
| keywords[16].score | 0.3342980146408081 |
| keywords[16].display_name | Mathematics |
| keywords[17].id | https://openalex.org/keywords/medicine |
| keywords[17].score | 0.25848388671875 |
| keywords[17].display_name | Medicine |
| keywords[18].id | https://openalex.org/keywords/environmental-health |
| keywords[18].score | 0.21009066700935364 |
| keywords[18].display_name | Environmental health |
| language | en |
| locations[0].id | doi:10.3390/ijerph19116671 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S15239247 |
| locations[0].source.issn | 1660-4601, 1661-7827 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1660-4601 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Environmental Research and Public Health |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1660-4601/19/11/6671/pdf?version=1653907246 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Environmental Research and Public Health |
| locations[0].landing_page_url | https://doi.org/10.3390/ijerph19116671 |
| locations[1].id | pmid:35682252 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | International journal of environmental research and public health |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35682252 |
| locations[2].id | pmh:oai:doaj.org/article:a64a8176e04646f8807cb5c6c22d837c |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | International Journal of Environmental Research and Public Health, Vol 19, Iss 6671, p 6671 (2022) |
| locations[2].landing_page_url | https://doaj.org/article/a64a8176e04646f8807cb5c6c22d837c |
| locations[3].id | pmh:oai:mdpi.com:/1660-4601/19/11/6671/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | International Journal of Environmental Research and Public Health; Volume 19; Issue 11; Pages: 6671 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/ijerph19116671 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:9180360 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Int J Environ Res Public Health |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9180360 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5085276683 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0452-9983 |
| authorships[0].author.display_name | Ratih Oktri Nanda |
| authorships[0].countries | ID |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I165230279 |
| authorships[0].affiliations[0].raw_affiliation_string | Center for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia |
| authorships[0].institutions[0].id | https://openalex.org/I165230279 |
| authorships[0].institutions[0].ror | https://ror.org/03ke6d638 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I165230279 |
| authorships[0].institutions[0].country_code | ID |
| authorships[0].institutions[0].display_name | Universitas Gadjah Mada |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ratih Oktri Nanda |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Center for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia |
| authorships[1].author.id | https://openalex.org/A5040434542 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0572-0424 |
| authorships[1].author.display_name | Aldilas Achmad Nursetyo |
| authorships[1].countries | ID |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I165230279 |
| authorships[1].affiliations[0].raw_affiliation_string | Center for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia |
| authorships[1].institutions[0].id | https://openalex.org/I165230279 |
| authorships[1].institutions[0].ror | https://ror.org/03ke6d638 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I165230279 |
| authorships[1].institutions[0].country_code | ID |
| authorships[1].institutions[0].display_name | Universitas Gadjah Mada |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Aldilas Achmad Nursetyo |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Center for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia |
| authorships[2].author.id | https://openalex.org/A5059601815 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0968-988X |
| authorships[2].author.display_name | Aditya Lia Ramadona |
| authorships[2].countries | ID |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I165230279 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Health Behavior, Environment and Social Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia |
| authorships[2].institutions[0].id | https://openalex.org/I165230279 |
| authorships[2].institutions[0].ror | https://ror.org/03ke6d638 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I165230279 |
| authorships[2].institutions[0].country_code | ID |
| authorships[2].institutions[0].display_name | Universitas Gadjah Mada |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Aditya Lia Ramadona |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Health Behavior, Environment and Social Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia |
| authorships[3].author.id | https://openalex.org/A5014724541 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2371-7795 |
| authorships[3].author.display_name | Muhammad Ali Imron |
| authorships[3].countries | ID |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I165230279 |
| authorships[3].affiliations[0].raw_affiliation_string | Wildlife Laboratory, Faculty of Forestry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia |
| authorships[3].institutions[0].id | https://openalex.org/I165230279 |
| authorships[3].institutions[0].ror | https://ror.org/03ke6d638 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I165230279 |
| authorships[3].institutions[0].country_code | ID |
| authorships[3].institutions[0].display_name | Universitas Gadjah Mada |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Muhammad Ali Imron |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Wildlife Laboratory, Faculty of Forestry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia |
| authorships[4].author.id | https://openalex.org/A5072710319 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2303-5903 |
| authorships[4].author.display_name | Anis Fuad |
| authorships[4].countries | ID |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I165230279 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Biostatistics, Epidemiology, Population Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I165230279 |
| authorships[4].affiliations[1].raw_affiliation_string | Center for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia |
| authorships[4].institutions[0].id | https://openalex.org/I165230279 |
| authorships[4].institutions[0].ror | https://ror.org/03ke6d638 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I165230279 |
| authorships[4].institutions[0].country_code | ID |
| authorships[4].institutions[0].display_name | Universitas Gadjah Mada |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Anis Fuad |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Center for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia, Department of Biostatistics, Epidemiology, Population Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia |
| authorships[5].author.id | https://openalex.org/A5065987459 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Althaf Setyawan |
| authorships[5].countries | ID |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I165230279 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Reproductive Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia |
| authorships[5].institutions[0].id | https://openalex.org/I165230279 |
| authorships[5].institutions[0].ror | https://ror.org/03ke6d638 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I165230279 |
| authorships[5].institutions[0].country_code | ID |
| authorships[5].institutions[0].display_name | Universitas Gadjah Mada |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Althaf Setyawan |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Reproductive Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia |
| authorships[6].author.id | https://openalex.org/A5057943710 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-9340-3922 |
| authorships[6].author.display_name | Riris Andono Ahmad |
| authorships[6].countries | ID |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I165230279 |
| authorships[6].affiliations[0].raw_affiliation_string | Center for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I165230279 |
| authorships[6].affiliations[1].raw_affiliation_string | Department of Biostatistics, Epidemiology, Population Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia |
| authorships[6].institutions[0].id | https://openalex.org/I165230279 |
| authorships[6].institutions[0].ror | https://ror.org/03ke6d638 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I165230279 |
| authorships[6].institutions[0].country_code | ID |
| authorships[6].institutions[0].display_name | Universitas Gadjah Mada |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Riris Andono Ahmad |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Center for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia, Department of Biostatistics, Epidemiology, Population Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1660-4601/19/11/6671/pdf?version=1653907246 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Community Mobility and COVID-19 Dynamics in Jakarta, Indonesia |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10410 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2611 |
| primary_topic.subfield.display_name | Modeling and Simulation |
| primary_topic.display_name | COVID-19 epidemiological studies |
| related_works | https://openalex.org/W2586047144, https://openalex.org/W1639044165, https://openalex.org/W3016675171, https://openalex.org/W3021591465, https://openalex.org/W2242826594, https://openalex.org/W4287781063, https://openalex.org/W3036573352, https://openalex.org/W4386941098, https://openalex.org/W2586293456, https://openalex.org/W2003226215 |
| cited_by_count | 20 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 6 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 4 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/ijerph19116671 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S15239247 |
| best_oa_location.source.issn | 1660-4601, 1661-7827 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1660-4601 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Environmental Research and Public Health |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1660-4601/19/11/6671/pdf?version=1653907246 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Environmental Research and Public Health |
| best_oa_location.landing_page_url | https://doi.org/10.3390/ijerph19116671 |
| primary_location.id | doi:10.3390/ijerph19116671 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S15239247 |
| primary_location.source.issn | 1660-4601, 1661-7827 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1660-4601 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Environmental Research and Public Health |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1660-4601/19/11/6671/pdf?version=1653907246 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Environmental Research and Public Health |
| primary_location.landing_page_url | https://doi.org/10.3390/ijerph19116671 |
| publication_date | 2022-05-30 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3012678476, https://openalex.org/W3031361844, https://openalex.org/W2074329989, https://openalex.org/W4220912138, https://openalex.org/W3039225830, https://openalex.org/W6785709118, https://openalex.org/W3100869448, https://openalex.org/W3039385989, https://openalex.org/W3130914001, https://openalex.org/W3212555876, https://openalex.org/W3131669671, https://openalex.org/W2122463941, https://openalex.org/W3084123749, https://openalex.org/W2804183390, https://openalex.org/W3114152794, https://openalex.org/W3037490325, https://openalex.org/W6922474272, https://openalex.org/W3121146886, https://openalex.org/W3010152820, https://openalex.org/W3112818578, https://openalex.org/W3014143167, https://openalex.org/W3092846951, https://openalex.org/W1992845511, https://openalex.org/W3044761982, https://openalex.org/W3084885616, https://openalex.org/W3010131837, https://openalex.org/W3114374233, https://openalex.org/W3121139527, https://openalex.org/W2012506695, https://openalex.org/W3105021736, https://openalex.org/W3019051739, https://openalex.org/W3096544550 |
| referenced_works_count | 32 |
| abstract_inverted_index.a | 188 |
| abstract_inverted_index.p | 107 |
| abstract_inverted_index.15 | 44 |
| abstract_inverted_index.31 | 47 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.We | 35 |
| abstract_inverted_index.as | 183 |
| abstract_inverted_index.be | 171 |
| abstract_inverted_index.by | 178 |
| abstract_inverted_index.in | 32, 103, 133, 139, 156, 184 |
| abstract_inverted_index.of | 25, 100, 116, 128, 149 |
| abstract_inverted_index.on | 8, 130 |
| abstract_inverted_index.to | 2, 28, 46, 71, 153, 173 |
| abstract_inverted_index.52% | 99 |
| abstract_inverted_index.CMR | 151 |
| abstract_inverted_index.Due | 70 |
| abstract_inverted_index.PCA | 93 |
| abstract_inverted_index.and | 38, 65, 124, 141, 159, 169, 194 |
| abstract_inverted_index.are | 165 |
| abstract_inverted_index.can | 170 |
| abstract_inverted_index.for | 121, 191 |
| abstract_inverted_index.one | 78 |
| abstract_inverted_index.the | 3, 23, 95, 136, 147, 185 |
| abstract_inverted_index.was | 94 |
| abstract_inverted_index.< | 108 |
| abstract_inverted_index.GLM, | 64 |
| abstract_inverted_index.This | 20, 110, 144 |
| abstract_inverted_index.case | 180 |
| abstract_inverted_index.data | 7, 27, 41, 152, 167 |
| abstract_inverted_index.from | 43 |
| abstract_inverted_index.have | 125 |
| abstract_inverted_index.help | 154 |
| abstract_inverted_index.high | 189 |
| abstract_inverted_index.into | 77 |
| abstract_inverted_index.risk | 193 |
| abstract_inverted_index.sets | 42 |
| abstract_inverted_index.such | 182 |
| abstract_inverted_index.that | 113 |
| abstract_inverted_index.used | 172 |
| abstract_inverted_index.were | 53, 75, 118 |
| abstract_inverted_index.when | 163 |
| abstract_inverted_index.with | 89, 135, 187 |
| abstract_inverted_index.0.52; | 106 |
| abstract_inverted_index.2020. | 49 |
| abstract_inverted_index.Model | 59 |
| abstract_inverted_index.Three | 50 |
| abstract_inverted_index.cases | 102, 123 |
| abstract_inverted_index.found | 112 |
| abstract_inverted_index.index | 80 |
| abstract_inverted_index.study | 21, 111, 145 |
| abstract_inverted_index.there | 164 |
| abstract_inverted_index.three | 73 |
| abstract_inverted_index.types | 115 |
| abstract_inverted_index.using | 81, 92, 150 |
| abstract_inverted_index.(CMR). | 19 |
| abstract_inverted_index.(GLM), | 60 |
| abstract_inverted_index.(MLR). | 69 |
| abstract_inverted_index.(PCA). | 85 |
| abstract_inverted_index.0.05). | 109 |
| abstract_inverted_index.Google | 15 |
| abstract_inverted_index.Linear | 58, 67, 87 |
| abstract_inverted_index.became | 11 |
| abstract_inverted_index.during | 195 |
| abstract_inverted_index.health | 175 |
| abstract_inverted_index.impact | 129 |
| abstract_inverted_index.levels | 127 |
| abstract_inverted_index.making | 158 |
| abstract_inverted_index.model, | 97 |
| abstract_inverted_index.models | 52 |
| abstract_inverted_index.places | 186 |
| abstract_inverted_index.policy | 160 |
| abstract_inverted_index.single | 79 |
| abstract_inverted_index.surge, | 181 |
| abstract_inverted_index.system | 176 |
| abstract_inverted_index.Jakarta | 104 |
| abstract_inverted_index.Poisson | 55 |
| abstract_inverted_index.Reports | 18 |
| abstract_inverted_index.events. | 197 |
| abstract_inverted_index.highest | 137 |
| abstract_inverted_index.improve | 174 |
| abstract_inverted_index.limited | 166 |
| abstract_inverted_index.predict | 29 |
| abstract_inverted_index.reduced | 76 |
| abstract_inverted_index.(4.12%). | 143 |
| abstract_inverted_index.Analysis | 84 |
| abstract_inverted_index.Binomial | 62 |
| abstract_inverted_index.COVID-19 | 4, 30, 101, 122, 131 |
| abstract_inverted_index.December | 48 |
| abstract_inverted_index.February | 45 |
| abstract_inverted_index.Jakarta, | 33, 134 |
| abstract_inverted_index.Mobility | 17 |
| abstract_inverted_index.Multiple | 66, 86 |
| abstract_inverted_index.Negative | 61 |
| abstract_inverted_index.acquired | 36 |
| abstract_inverted_index.best-fit | 96 |
| abstract_inverted_index.decision | 157 |
| abstract_inverted_index.dynamics | 31, 132 |
| abstract_inverted_index.explored | 22 |
| abstract_inverted_index.mobility | 26, 40, 117 |
| abstract_inverted_index.movement | 10 |
| abstract_inverted_index.observed | 138 |
| abstract_inverted_index.publicly | 12 |
| abstract_inverted_index.response | 1 |
| abstract_inverted_index.seasonal | 196 |
| abstract_inverted_index.variable | 90 |
| abstract_inverted_index.Community | 16 |
| abstract_inverted_index.Component | 83 |
| abstract_inverted_index.Principal | 82 |
| abstract_inverted_index.different | 114, 126 |
| abstract_inverted_index.explored: | 54 |
| abstract_inverted_index.including | 14 |
| abstract_inverted_index.pandemic, | 5 |
| abstract_inverted_index.potential | 190 |
| abstract_inverted_index.readiness | 177 |
| abstract_inverted_index.(R-Square: | 105 |
| abstract_inverted_index.Indonesia. | 34 |
| abstract_inverted_index.Regression | 56, 63, 68, 88 |
| abstract_inverted_index.aggregated | 37 |
| abstract_inverted_index.anonymized | 39 |
| abstract_inverted_index.available, | 13, 168 |
| abstract_inverted_index.categories | 74 |
| abstract_inverted_index.especially | 162 |
| abstract_inverted_index.explaining | 98 |
| abstract_inverted_index.population | 9 |
| abstract_inverted_index.predictors | 120 |
| abstract_inverted_index.“grocery | 140 |
| abstract_inverted_index.Generalized | 57 |
| abstract_inverted_index.adjustments | 91 |
| abstract_inverted_index.pharmacy” | 142 |
| abstract_inverted_index.significant | 119 |
| abstract_inverted_index.statistical | 51 |
| abstract_inverted_index.utilization | 24 |
| abstract_inverted_index.anticipating | 179 |
| abstract_inverted_index.demonstrates | 146 |
| abstract_inverted_index.formulation, | 161 |
| abstract_inverted_index.mobile-phone | 6 |
| abstract_inverted_index.policymakers | 155 |
| abstract_inverted_index.practicality | 148 |
| abstract_inverted_index.transmission | 192 |
| abstract_inverted_index.multicollinearity, | 72 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5057943710 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I165230279 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.6499999761581421 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.90660295 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |