Comparative analysis of loan risk forecasting using quantum machine learning and classical machine learning models Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-7907390/v1
Non-performing loans present a significant challenge to financial institutions, driven by the complexity of the dataset, default probability, and default correlation(Bellotti et al., 2019). To mitigate this risk, this study investigates the potential of Machine Learning (ML) and Quantum Machine Learning (QML) algorithms for forecasting loan risk. Using a dataset from Kaggle, we conducted a comparative analysis between Support Vector Machine (SVM) and Quantum Support Vector Machine (QSVM).Our result using a dataset of 12,368 records and 12 features shows that the QSVM model outperformed SVM, with a higher true positive rate (93.2.%) and true negative rate (87.6%), demonstrating better performance in identifying both default and non-default cases. Additionally, QSVM exhibits a lower false negative rate indicating its superior ability to minimize clients likely to default. The AUC score of 1.0 for the QSVM further demonstrates its exceptional ability in loan prediction. While the dataset used allowed for a solid comparison, QSVM demonstrated its capacity to continue improving with larger datasets, showing its scalability and strong potential application in loan risk forecasting especially with larger datasets.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.21203/rs.3.rs-7907390/v1
- https://www.researchsquare.com/article/rs-7907390/latest.pdf
- OA Status
- gold
- References
- 29
- OpenAlex ID
- https://openalex.org/W4415408938
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415408938Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-7907390/v1Digital Object Identifier
- Title
-
Comparative analysis of loan risk forecasting using quantum machine learning and classical machine learning modelsWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-21Full publication date if available
- Authors
-
Aida Mustapha, Peter Nimbe, Abdul Razak NuhuList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-7907390/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-7907390/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-7907390/latest.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
29Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415408938 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-7907390/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-7907390/v1 |
| ids.openalex | https://openalex.org/W4415408938 |
| fwci | 0.0 |
| type | article |
| title | Comparative analysis of loan risk forecasting using quantum machine learning and classical machine learning models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11326 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9648000001907349 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Stock Market Forecasting Methods |
| topics[1].id | https://openalex.org/T10320 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9552000164985657 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | doi:10.21203/rs.3.rs-7907390/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-7907390/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-7907390/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5032045434 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9077-4995 |
| authorships[0].author.display_name | Aida Mustapha |
| authorships[0].countries | GH |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I291863076 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Energy and Natural Resources |
| authorships[0].institutions[0].id | https://openalex.org/I291863076 |
| authorships[0].institutions[0].ror | https://ror.org/05r9rzb75 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I291863076 |
| authorships[0].institutions[0].country_code | GH |
| authorships[0].institutions[0].display_name | University of Energy and Natural Resources |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Adamu Mohammed Mustapha |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Energy and Natural Resources |
| authorships[1].author.id | https://openalex.org/A5068146656 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6823-5274 |
| authorships[1].author.display_name | Peter Nimbe |
| authorships[1].countries | GH |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I291863076 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Energy and Natural Resources |
| authorships[1].institutions[0].id | https://openalex.org/I291863076 |
| authorships[1].institutions[0].ror | https://ror.org/05r9rzb75 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I291863076 |
| authorships[1].institutions[0].country_code | GH |
| authorships[1].institutions[0].display_name | University of Energy and Natural Resources |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Peter Nimbe |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Energy and Natural Resources |
| authorships[2].author.id | https://openalex.org/A5088255053 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2596-1740 |
| authorships[2].author.display_name | Abdul Razak Nuhu |
| authorships[2].countries | GH |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I291863076 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Energy and Natural Resources |
| authorships[2].institutions[0].id | https://openalex.org/I291863076 |
| authorships[2].institutions[0].ror | https://ror.org/05r9rzb75 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I291863076 |
| authorships[2].institutions[0].country_code | GH |
| authorships[2].institutions[0].display_name | University of Energy and Natural Resources |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Abdul Razak Nuhu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Energy and Natural Resources |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-7907390/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-22T00:00:00 |
| display_name | Comparative analysis of loan risk forecasting using quantum machine learning and classical machine learning models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11326 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9648000001907349 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Stock Market Forecasting Methods |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-7907390/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-7907390/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-7907390/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-7907390/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-7907390/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-7907390/v1 |
| publication_date | 2025-10-21 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4386427412, https://openalex.org/W3027577364, https://openalex.org/W2809488497, https://openalex.org/W2097936772, https://openalex.org/W2045314657, https://openalex.org/W3027818173, https://openalex.org/W2468376182, https://openalex.org/W4308444419, https://openalex.org/W4238663475, https://openalex.org/W3122925549, https://openalex.org/W2808979145, https://openalex.org/W2918821272, https://openalex.org/W4317377585, https://openalex.org/W4382628763, https://openalex.org/W4396711855, https://openalex.org/W4384559915, https://openalex.org/W4321850679, https://openalex.org/W4391243055, https://openalex.org/W2781738013, https://openalex.org/W3137399302, https://openalex.org/W4391700448, https://openalex.org/W4396581677, https://openalex.org/W2062333046, https://openalex.org/W3037047454, https://openalex.org/W4319081409, https://openalex.org/W2975374233, https://openalex.org/W2788079077, https://openalex.org/W3104962094, https://openalex.org/W3100931082 |
| referenced_works_count | 29 |
| abstract_inverted_index.a | 4, 49, 55, 71, 87, 111, 148 |
| abstract_inverted_index.12 | 77 |
| abstract_inverted_index.To | 25 |
| abstract_inverted_index.by | 11 |
| abstract_inverted_index.et | 22 |
| abstract_inverted_index.in | 101, 139, 168 |
| abstract_inverted_index.of | 14, 34, 73, 129 |
| abstract_inverted_index.to | 7, 120, 124, 155 |
| abstract_inverted_index.we | 53 |
| abstract_inverted_index.1.0 | 130 |
| abstract_inverted_index.AUC | 127 |
| abstract_inverted_index.The | 126 |
| abstract_inverted_index.and | 19, 38, 63, 76, 93, 105, 164 |
| abstract_inverted_index.for | 44, 131, 147 |
| abstract_inverted_index.its | 117, 136, 153, 162 |
| abstract_inverted_index.the | 12, 15, 32, 81, 132, 143 |
| abstract_inverted_index.(ML) | 37 |
| abstract_inverted_index.QSVM | 82, 109, 133, 151 |
| abstract_inverted_index.SVM, | 85 |
| abstract_inverted_index.al., | 23 |
| abstract_inverted_index.both | 103 |
| abstract_inverted_index.from | 51 |
| abstract_inverted_index.loan | 46, 140, 169 |
| abstract_inverted_index.rate | 91, 96, 115 |
| abstract_inverted_index.risk | 170 |
| abstract_inverted_index.that | 80 |
| abstract_inverted_index.this | 27, 29 |
| abstract_inverted_index.true | 89, 94 |
| abstract_inverted_index.used | 145 |
| abstract_inverted_index.with | 86, 158, 173 |
| abstract_inverted_index.(QML) | 42 |
| abstract_inverted_index.(SVM) | 62 |
| abstract_inverted_index.Using | 48 |
| abstract_inverted_index.While | 142 |
| abstract_inverted_index.false | 113 |
| abstract_inverted_index.loans | 2 |
| abstract_inverted_index.lower | 112 |
| abstract_inverted_index.model | 83 |
| abstract_inverted_index.risk, | 28 |
| abstract_inverted_index.risk. | 47 |
| abstract_inverted_index.score | 128 |
| abstract_inverted_index.shows | 79 |
| abstract_inverted_index.solid | 149 |
| abstract_inverted_index.study | 30 |
| abstract_inverted_index.using | 70 |
| abstract_inverted_index.12,368 | 74 |
| abstract_inverted_index.2019). | 24 |
| abstract_inverted_index.Vector | 60, 66 |
| abstract_inverted_index.better | 99 |
| abstract_inverted_index.cases. | 107 |
| abstract_inverted_index.driven | 10 |
| abstract_inverted_index.higher | 88 |
| abstract_inverted_index.larger | 159, 174 |
| abstract_inverted_index.likely | 123 |
| abstract_inverted_index.result | 69 |
| abstract_inverted_index.strong | 165 |
| abstract_inverted_index.Kaggle, | 52 |
| abstract_inverted_index.Machine | 35, 40, 61, 67 |
| abstract_inverted_index.Quantum | 39, 64 |
| abstract_inverted_index.Support | 59, 65 |
| abstract_inverted_index.ability | 119, 138 |
| abstract_inverted_index.allowed | 146 |
| abstract_inverted_index.between | 58 |
| abstract_inverted_index.clients | 122 |
| abstract_inverted_index.dataset | 50, 72, 144 |
| abstract_inverted_index.default | 17, 20, 104 |
| abstract_inverted_index.further | 134 |
| abstract_inverted_index.present | 3 |
| abstract_inverted_index.records | 75 |
| abstract_inverted_index.showing | 161 |
| abstract_inverted_index.(87.6%), | 97 |
| abstract_inverted_index.(93.2.%) | 92 |
| abstract_inverted_index.Learning | 36, 41 |
| abstract_inverted_index.analysis | 57 |
| abstract_inverted_index.capacity | 154 |
| abstract_inverted_index.continue | 156 |
| abstract_inverted_index.dataset, | 16 |
| abstract_inverted_index.default. | 125 |
| abstract_inverted_index.exhibits | 110 |
| abstract_inverted_index.features | 78 |
| abstract_inverted_index.minimize | 121 |
| abstract_inverted_index.mitigate | 26 |
| abstract_inverted_index.negative | 95, 114 |
| abstract_inverted_index.positive | 90 |
| abstract_inverted_index.superior | 118 |
| abstract_inverted_index.challenge | 6 |
| abstract_inverted_index.conducted | 54 |
| abstract_inverted_index.datasets, | 160 |
| abstract_inverted_index.datasets. | 175 |
| abstract_inverted_index.financial | 8 |
| abstract_inverted_index.improving | 157 |
| abstract_inverted_index.potential | 33, 166 |
| abstract_inverted_index.(QSVM).Our | 68 |
| abstract_inverted_index.algorithms | 43 |
| abstract_inverted_index.complexity | 13 |
| abstract_inverted_index.especially | 172 |
| abstract_inverted_index.indicating | 116 |
| abstract_inverted_index.application | 167 |
| abstract_inverted_index.comparative | 56 |
| abstract_inverted_index.comparison, | 150 |
| abstract_inverted_index.exceptional | 137 |
| abstract_inverted_index.forecasting | 45, 171 |
| abstract_inverted_index.identifying | 102 |
| abstract_inverted_index.non-default | 106 |
| abstract_inverted_index.performance | 100 |
| abstract_inverted_index.prediction. | 141 |
| abstract_inverted_index.scalability | 163 |
| abstract_inverted_index.significant | 5 |
| abstract_inverted_index.demonstrated | 152 |
| abstract_inverted_index.demonstrates | 135 |
| abstract_inverted_index.investigates | 31 |
| abstract_inverted_index.outperformed | 84 |
| abstract_inverted_index.probability, | 18 |
| abstract_inverted_index.Additionally, | 108 |
| abstract_inverted_index.demonstrating | 98 |
| abstract_inverted_index.institutions, | 9 |
| abstract_inverted_index.Non-performing | 1 |
| abstract_inverted_index.correlation(Bellotti | 21 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.58461832 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |