Comparative Analysis of Machine Learning Algorithms for Classification of UAV-based Photogrammetric Cultural Heritage Point Clouds Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5194/isprs-archives-xlviii-5-w3-2025-17-2025
Unmanned Aerial Vehicles (UAVs) are being increasingly utilized across different fields because of their ability to deliver quick, cost-effective, and precise spatial information. Innovations in photogrammetry and computer vision techniques, especially Structure from Motion (SfM) and Multi-View Stereo (MVS), have improved the generation of orthoimages, digital surface models, and dense point clouds, rendering UAVs highly efficient for documentation and three-dimensional reconstruction. In studies focused on cultural heritage, UAV-based photogrammetry has emerged as a crucial resource for accurately preserving and representing historical sites with great detail and resolution. In this context, the current study analyzes UAV-acquired point cloud data from the Temple of Hera in Italy and performs a comparative assessment of three machine learning algorithms, Support Vector Machines (SVM), Random Forest (RF), and Extreme Gradient Boosting (XGBoost), for the purpose of semantic segmentation tasks. According to our results, the XGBoost and Random Forests (RF) methods has reached to more than 90% F1 score for all classes, and the SVM method has reached 90% F1 score only for three classes.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5194/isprs-archives-xlviii-5-w3-2025-17-2025
- https://isprs-archives.copernicus.org/articles/XLVIII-5-W3-2025/17/2025/isprs-archives-XLVIII-5-W3-2025-17-2025.pdf
- OA Status
- diamond
- OpenAlex ID
- https://openalex.org/W7105535549
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7105535549Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/isprs-archives-xlviii-5-w3-2025-17-2025Digital Object Identifier
- Title
-
Comparative Analysis of Machine Learning Algorithms for Classification of UAV-based Photogrammetric Cultural Heritage Point CloudsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-12Full publication date if available
- Authors
-
M. Arkali, M. Y. Biyik, M. E. AtikList of authors in order
- Landing page
-
https://doi.org/10.5194/isprs-archives-xlviii-5-w3-2025-17-2025Publisher landing page
- PDF URL
-
https://isprs-archives.copernicus.org/articles/XLVIII-5-W3-2025/17/2025/isprs-archives-XLVIII-5-W3-2025-17-2025.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://isprs-archives.copernicus.org/articles/XLVIII-5-W3-2025/17/2025/isprs-archives-XLVIII-5-W3-2025-17-2025.pdfDirect OA link when available
- Concepts
-
Point cloud, Photogrammetry, Artificial intelligence, Random forest, Computer science, Support vector machine, Machine learning, Segmentation, Structure from motion, Boosting (machine learning), Image segmentation, Computer vision, Aerial image, Cultural heritage, Stereo cameras, Machine vision, Documentation, Rendering (computer graphics), Algorithm, Lidar, Gradient boosting, Point (geometry), Aerial survey, Stereopsis, Statistical classification, Decision treeTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7105535549 |
|---|---|
| doi | https://doi.org/10.5194/isprs-archives-xlviii-5-w3-2025-17-2025 |
| ids.doi | https://doi.org/10.5194/isprs-archives-xlviii-5-w3-2025-17-2025 |
| ids.openalex | https://openalex.org/W7105535549 |
| fwci | 0.0 |
| type | article |
| title | Comparative Analysis of Machine Learning Algorithms for Classification of UAV-based Photogrammetric Cultural Heritage Point Clouds |
| biblio.issue | |
| biblio.volume | XLVIII-5/W3-2025 |
| biblio.last_page | 22 |
| biblio.first_page | 17 |
| topics[0].id | https://openalex.org/T11211 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9712046384811401 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1907 |
| topics[0].subfield.display_name | Geology |
| topics[0].display_name | 3D Surveying and Cultural Heritage |
| topics[1].id | https://openalex.org/T12364 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.0170119758695364 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1912 |
| topics[1].subfield.display_name | Space and Planetary Science |
| topics[1].display_name | Archaeological Research and Protection |
| topics[2].id | https://openalex.org/T11164 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.0033899869304150343 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Remote Sensing and LiDAR Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C131979681 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7220166921615601 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1899648 |
| concepts[0].display_name | Point cloud |
| concepts[1].id | https://openalex.org/C117455697 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7085837721824646 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q190149 |
| concepts[1].display_name | Photogrammetry |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6986938714981079 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C169258074 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6491749882698059 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[3].display_name | Random forest |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.6349261403083801 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C12267149 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5464330315589905 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[5].display_name | Support vector machine |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.48457178473472595 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C89600930 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4760627746582031 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[7].display_name | Segmentation |
| concepts[8].id | https://openalex.org/C146159030 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4599491059780121 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7625099 |
| concepts[8].display_name | Structure from motion |
| concepts[9].id | https://openalex.org/C46686674 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4223584532737732 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q466303 |
| concepts[9].display_name | Boosting (machine learning) |
| concepts[10].id | https://openalex.org/C124504099 |
| concepts[10].level | 3 |
| concepts[10].score | 0.3997001647949219 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[10].display_name | Image segmentation |
| concepts[11].id | https://openalex.org/C31972630 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3984382748603821 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[11].display_name | Computer vision |
| concepts[12].id | https://openalex.org/C2776429412 |
| concepts[12].level | 3 |
| concepts[12].score | 0.3854581117630005 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q4688011 |
| concepts[12].display_name | Aerial image |
| concepts[13].id | https://openalex.org/C60671577 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3712484836578369 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q210272 |
| concepts[13].display_name | Cultural heritage |
| concepts[14].id | https://openalex.org/C35861506 |
| concepts[14].level | 3 |
| concepts[14].score | 0.36141908168792725 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q17141434 |
| concepts[14].display_name | Stereo cameras |
| concepts[15].id | https://openalex.org/C5339829 |
| concepts[15].level | 2 |
| concepts[15].score | 0.35522639751434326 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1425977 |
| concepts[15].display_name | Machine vision |
| concepts[16].id | https://openalex.org/C56666940 |
| concepts[16].level | 2 |
| concepts[16].score | 0.3496684432029724 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q788790 |
| concepts[16].display_name | Documentation |
| concepts[17].id | https://openalex.org/C205711294 |
| concepts[17].level | 2 |
| concepts[17].score | 0.3487834632396698 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q176953 |
| concepts[17].display_name | Rendering (computer graphics) |
| concepts[18].id | https://openalex.org/C11413529 |
| concepts[18].level | 1 |
| concepts[18].score | 0.34539538621902466 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[18].display_name | Algorithm |
| concepts[19].id | https://openalex.org/C51399673 |
| concepts[19].level | 2 |
| concepts[19].score | 0.3436146676540375 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q504027 |
| concepts[19].display_name | Lidar |
| concepts[20].id | https://openalex.org/C70153297 |
| concepts[20].level | 3 |
| concepts[20].score | 0.31944724917411804 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q5591907 |
| concepts[20].display_name | Gradient boosting |
| concepts[21].id | https://openalex.org/C28719098 |
| concepts[21].level | 2 |
| concepts[21].score | 0.3056144714355469 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q44946 |
| concepts[21].display_name | Point (geometry) |
| concepts[22].id | https://openalex.org/C176262533 |
| concepts[22].level | 2 |
| concepts[22].score | 0.29322656989097595 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q4688034 |
| concepts[22].display_name | Aerial survey |
| concepts[23].id | https://openalex.org/C68537008 |
| concepts[23].level | 2 |
| concepts[23].score | 0.287992388010025 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q247932 |
| concepts[23].display_name | Stereopsis |
| concepts[24].id | https://openalex.org/C110083411 |
| concepts[24].level | 2 |
| concepts[24].score | 0.2858183681964874 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q1744628 |
| concepts[24].display_name | Statistical classification |
| concepts[25].id | https://openalex.org/C84525736 |
| concepts[25].level | 2 |
| concepts[25].score | 0.2715829908847809 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q831366 |
| concepts[25].display_name | Decision tree |
| keywords[0].id | https://openalex.org/keywords/point-cloud |
| keywords[0].score | 0.7220166921615601 |
| keywords[0].display_name | Point cloud |
| keywords[1].id | https://openalex.org/keywords/photogrammetry |
| keywords[1].score | 0.7085837721824646 |
| keywords[1].display_name | Photogrammetry |
| keywords[2].id | https://openalex.org/keywords/random-forest |
| keywords[2].score | 0.6491749882698059 |
| keywords[2].display_name | Random forest |
| keywords[3].id | https://openalex.org/keywords/support-vector-machine |
| keywords[3].score | 0.5464330315589905 |
| keywords[3].display_name | Support vector machine |
| keywords[4].id | https://openalex.org/keywords/segmentation |
| keywords[4].score | 0.4760627746582031 |
| keywords[4].display_name | Segmentation |
| keywords[5].id | https://openalex.org/keywords/structure-from-motion |
| keywords[5].score | 0.4599491059780121 |
| keywords[5].display_name | Structure from motion |
| keywords[6].id | https://openalex.org/keywords/boosting |
| keywords[6].score | 0.4223584532737732 |
| keywords[6].display_name | Boosting (machine learning) |
| keywords[7].id | https://openalex.org/keywords/image-segmentation |
| keywords[7].score | 0.3997001647949219 |
| keywords[7].display_name | Image segmentation |
| keywords[8].id | https://openalex.org/keywords/aerial-image |
| keywords[8].score | 0.3854581117630005 |
| keywords[8].display_name | Aerial image |
| language | en |
| locations[0].id | doi:10.5194/isprs-archives-xlviii-5-w3-2025-17-2025 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737215817 |
| locations[0].source.issn | 1682-1750, 1682-1777, 2194-9034 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1682-1750 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| locations[0].source.host_organization | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_name | Copernicus Publications |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310313756 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://isprs-archives.copernicus.org/articles/XLVIII-5-W3-2025/17/2025/isprs-archives-XLVIII-5-W3-2025-17-2025.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| locations[0].landing_page_url | https://doi.org/10.5194/isprs-archives-xlviii-5-w3-2025-17-2025 |
| locations[1].id | pmh:oai:doaj.org/article:a7133852d7a64c27856469fe2da26664 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].source.host_organization_lineage | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XLVIII-5-W3-2025, Pp 17-22 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/a7133852d7a64c27856469fe2da26664 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | M. Arkali |
| authorships[0].countries | TR |
| authorships[0].institutions[0].id | https://openalex.org/I48912391 |
| authorships[0].institutions[0].ror | https://ror.org/https://ror.org/059636586 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I48912391 |
| authorships[0].institutions[0].country_code | TR |
| authorships[0].institutions[0].display_name | Istanbul Technical University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | M. Arkali |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | M. Y. Biyik |
| authorships[1].countries | TR |
| authorships[1].institutions[0].id | https://openalex.org/I48912391 |
| authorships[1].institutions[0].ror | https://ror.org/https://ror.org/059636586 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I48912391 |
| authorships[1].institutions[0].country_code | TR |
| authorships[1].institutions[0].display_name | Istanbul Technical University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | M. Y. Biyik |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A4281979445 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | M. E. Atik |
| authorships[2].countries | TR |
| authorships[2].institutions[0].id | https://openalex.org/I48912391 |
| authorships[2].institutions[0].ror | https://ror.org/https://ror.org/059636586 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I48912391 |
| authorships[2].institutions[0].country_code | TR |
| authorships[2].institutions[0].display_name | Istanbul Technical University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | M. E. Atik |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://isprs-archives.copernicus.org/articles/XLVIII-5-W3-2025/17/2025/isprs-archives-XLVIII-5-W3-2025-17-2025.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-13T00:00:00 |
| display_name | Comparative Analysis of Machine Learning Algorithms for Classification of UAV-based Photogrammetric Cultural Heritage Point Clouds |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-13T23:09:34.443669 |
| primary_topic.id | https://openalex.org/T11211 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9712046384811401 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1907 |
| primary_topic.subfield.display_name | Geology |
| primary_topic.display_name | 3D Surveying and Cultural Heritage |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.5194/isprs-archives-xlviii-5-w3-2025-17-2025 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737215817 |
| best_oa_location.source.issn | 1682-1750, 1682-1777, 2194-9034 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1682-1750 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_name | Copernicus Publications |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://isprs-archives.copernicus.org/articles/XLVIII-5-W3-2025/17/2025/isprs-archives-XLVIII-5-W3-2025-17-2025.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.5194/isprs-archives-xlviii-5-w3-2025-17-2025 |
| primary_location.id | doi:10.5194/isprs-archives-xlviii-5-w3-2025-17-2025 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737215817 |
| primary_location.source.issn | 1682-1750, 1682-1777, 2194-9034 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1682-1750 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| primary_location.source.host_organization | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_name | Copernicus Publications |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://isprs-archives.copernicus.org/articles/XLVIII-5-W3-2025/17/2025/isprs-archives-XLVIII-5-W3-2025-17-2025.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| primary_location.landing_page_url | https://doi.org/10.5194/isprs-archives-xlviii-5-w3-2025-17-2025 |
| publication_date | 2025-11-12 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 73, 108 |
| abstract_inverted_index.F1 | 152, 164 |
| abstract_inverted_index.In | 62, 88 |
| abstract_inverted_index.as | 72 |
| abstract_inverted_index.in | 25, 104 |
| abstract_inverted_index.of | 13, 44, 102, 111, 131 |
| abstract_inverted_index.on | 65 |
| abstract_inverted_index.to | 16, 136, 148 |
| abstract_inverted_index.90% | 151, 163 |
| abstract_inverted_index.SVM | 159 |
| abstract_inverted_index.all | 155 |
| abstract_inverted_index.and | 20, 27, 36, 49, 59, 79, 86, 106, 123, 141, 157 |
| abstract_inverted_index.are | 5 |
| abstract_inverted_index.for | 57, 76, 128, 154, 167 |
| abstract_inverted_index.has | 70, 146, 161 |
| abstract_inverted_index.our | 137 |
| abstract_inverted_index.the | 42, 91, 100, 129, 139, 158 |
| abstract_inverted_index.(RF) | 144 |
| abstract_inverted_index.Hera | 103 |
| abstract_inverted_index.UAVs | 54 |
| abstract_inverted_index.data | 98 |
| abstract_inverted_index.from | 33, 99 |
| abstract_inverted_index.have | 40 |
| abstract_inverted_index.more | 149 |
| abstract_inverted_index.only | 166 |
| abstract_inverted_index.than | 150 |
| abstract_inverted_index.this | 89 |
| abstract_inverted_index.with | 83 |
| abstract_inverted_index.(RF), | 122 |
| abstract_inverted_index.(SfM) | 35 |
| abstract_inverted_index.Italy | 105 |
| abstract_inverted_index.being | 6 |
| abstract_inverted_index.cloud | 97 |
| abstract_inverted_index.dense | 50 |
| abstract_inverted_index.great | 84 |
| abstract_inverted_index.point | 51, 96 |
| abstract_inverted_index.score | 153, 165 |
| abstract_inverted_index.sites | 82 |
| abstract_inverted_index.study | 93 |
| abstract_inverted_index.their | 14 |
| abstract_inverted_index.three | 112, 168 |
| abstract_inverted_index.(MVS), | 39 |
| abstract_inverted_index.(SVM), | 119 |
| abstract_inverted_index.(UAVs) | 4 |
| abstract_inverted_index.Aerial | 2 |
| abstract_inverted_index.Forest | 121 |
| abstract_inverted_index.Motion | 34 |
| abstract_inverted_index.Random | 120, 142 |
| abstract_inverted_index.Stereo | 38 |
| abstract_inverted_index.Temple | 101 |
| abstract_inverted_index.Vector | 117 |
| abstract_inverted_index.across | 9 |
| abstract_inverted_index.detail | 85 |
| abstract_inverted_index.fields | 11 |
| abstract_inverted_index.highly | 55 |
| abstract_inverted_index.method | 160 |
| abstract_inverted_index.quick, | 18 |
| abstract_inverted_index.tasks. | 134 |
| abstract_inverted_index.vision | 29 |
| abstract_inverted_index.Extreme | 124 |
| abstract_inverted_index.Forests | 143 |
| abstract_inverted_index.Support | 116 |
| abstract_inverted_index.XGBoost | 140 |
| abstract_inverted_index.ability | 15 |
| abstract_inverted_index.because | 12 |
| abstract_inverted_index.clouds, | 52 |
| abstract_inverted_index.crucial | 74 |
| abstract_inverted_index.current | 92 |
| abstract_inverted_index.deliver | 17 |
| abstract_inverted_index.digital | 46 |
| abstract_inverted_index.emerged | 71 |
| abstract_inverted_index.focused | 64 |
| abstract_inverted_index.machine | 113 |
| abstract_inverted_index.methods | 145 |
| abstract_inverted_index.models, | 48 |
| abstract_inverted_index.precise | 21 |
| abstract_inverted_index.purpose | 130 |
| abstract_inverted_index.reached | 147, 162 |
| abstract_inverted_index.spatial | 22 |
| abstract_inverted_index.studies | 63 |
| abstract_inverted_index.surface | 47 |
| abstract_inverted_index.Boosting | 126 |
| abstract_inverted_index.Gradient | 125 |
| abstract_inverted_index.Machines | 118 |
| abstract_inverted_index.Unmanned | 1 |
| abstract_inverted_index.Vehicles | 3 |
| abstract_inverted_index.analyzes | 94 |
| abstract_inverted_index.classes, | 156 |
| abstract_inverted_index.classes. | 169 |
| abstract_inverted_index.computer | 28 |
| abstract_inverted_index.context, | 90 |
| abstract_inverted_index.cultural | 66 |
| abstract_inverted_index.improved | 41 |
| abstract_inverted_index.learning | 114 |
| abstract_inverted_index.performs | 107 |
| abstract_inverted_index.resource | 75 |
| abstract_inverted_index.results, | 138 |
| abstract_inverted_index.semantic | 132 |
| abstract_inverted_index.utilized | 8 |
| abstract_inverted_index.Abstract. | 0 |
| abstract_inverted_index.According | 135 |
| abstract_inverted_index.Structure | 32 |
| abstract_inverted_index.UAV-based | 68 |
| abstract_inverted_index.different | 10 |
| abstract_inverted_index.efficient | 56 |
| abstract_inverted_index.heritage, | 67 |
| abstract_inverted_index.rendering | 53 |
| abstract_inverted_index.(XGBoost), | 127 |
| abstract_inverted_index.Multi-View | 37 |
| abstract_inverted_index.accurately | 77 |
| abstract_inverted_index.assessment | 110 |
| abstract_inverted_index.especially | 31 |
| abstract_inverted_index.generation | 43 |
| abstract_inverted_index.historical | 81 |
| abstract_inverted_index.preserving | 78 |
| abstract_inverted_index.Innovations | 24 |
| abstract_inverted_index.algorithms, | 115 |
| abstract_inverted_index.comparative | 109 |
| abstract_inverted_index.resolution. | 87 |
| abstract_inverted_index.techniques, | 30 |
| abstract_inverted_index.UAV-acquired | 95 |
| abstract_inverted_index.increasingly | 7 |
| abstract_inverted_index.information. | 23 |
| abstract_inverted_index.orthoimages, | 45 |
| abstract_inverted_index.representing | 80 |
| abstract_inverted_index.segmentation | 133 |
| abstract_inverted_index.documentation | 58 |
| abstract_inverted_index.photogrammetry | 26, 69 |
| abstract_inverted_index.cost-effective, | 19 |
| abstract_inverted_index.reconstruction. | 61 |
| abstract_inverted_index.three-dimensional | 60 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.86669431 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |