Comparative Approaches by Using Machine Learning Algorithms in Crop Yield Prediction Article Swipe
Srikanta Kumar Mohapatra
,
Arpit Jain
,
Anshika
,
Arpita Jindal
,
Devanshi
,
Geetakshi
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.4157416
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.4157416
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2139/ssrn.4157416
- OA Status
- green
- Cited By
- 2
- References
- 15
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4288468819
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4288468819Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2139/ssrn.4157416Digital Object Identifier
- Title
-
Comparative Approaches by Using Machine Learning Algorithms in Crop Yield PredictionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
Srikanta Kumar Mohapatra, Arpit Jain, Anshika, Arpita Jindal, Devanshi, GeetakshiList of authors in order
- Landing page
-
https://doi.org/10.2139/ssrn.4157416Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2139/ssrn.4157416Direct OA link when available
- Concepts
-
Machine learning, Yield (engineering), Computer science, Artificial intelligence, Algorithm, Metallurgy, Materials scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2Per-year citation counts (last 5 years)
- References (count)
-
15Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4288468819 |
|---|---|
| doi | https://doi.org/10.2139/ssrn.4157416 |
| ids.doi | https://doi.org/10.2139/ssrn.4157416 |
| ids.openalex | https://openalex.org/W4288468819 |
| fwci | 0.35540269 |
| type | article |
| title | Comparative Approaches by Using Machine Learning Algorithms in Crop Yield Prediction |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9039999842643738 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C119857082 |
| concepts[0].level | 1 |
| concepts[0].score | 0.5536292791366577 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[0].display_name | Machine learning |
| concepts[1].id | https://openalex.org/C134121241 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5379922986030579 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q899301 |
| concepts[1].display_name | Yield (engineering) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5061716437339783 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.45591577887535095 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4389740228652954 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C191897082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11467 |
| concepts[5].display_name | Metallurgy |
| concepts[6].id | https://openalex.org/C192562407 |
| concepts[6].level | 0 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[6].display_name | Materials science |
| keywords[0].id | https://openalex.org/keywords/machine-learning |
| keywords[0].score | 0.5536292791366577 |
| keywords[0].display_name | Machine learning |
| keywords[1].id | https://openalex.org/keywords/yield |
| keywords[1].score | 0.5379922986030579 |
| keywords[1].display_name | Yield (engineering) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5061716437339783 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.45591577887535095 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/algorithm |
| keywords[4].score | 0.4389740228652954 |
| keywords[4].display_name | Algorithm |
| language | en |
| locations[0].id | doi:10.2139/ssrn.4157416 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172589 |
| locations[0].source.issn | 1556-5068 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1556-5068 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SSRN Electronic Journal |
| locations[0].source.host_organization | https://openalex.org/I1318003438 |
| locations[0].source.host_organization_name | RELX Group (Netherlands) |
| locations[0].source.host_organization_lineage | https://openalex.org/I1318003438 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | SSRN Electronic Journal |
| locations[0].landing_page_url | https://doi.org/10.2139/ssrn.4157416 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5087496776 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7291-1503 |
| authorships[0].author.display_name | Srikanta Kumar Mohapatra |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mohapatra, Srikanta Kumar |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5075344903 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2325-5893 |
| authorships[1].author.display_name | Arpit Jain |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jain, Arpit |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5074135883 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Anshika |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | ., Anshika |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5102494169 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Arpita Jindal |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jindal, Arpita |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5046246944 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Devanshi |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | ., Devanshi |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5098110697 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Geetakshi |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | ., Geetakshi |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2139/ssrn.4157416 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Comparative Approaches by Using Machine Learning Algorithms in Crop Yield Prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9039999842643738 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3209574120, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2139/ssrn.4157416 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172589 |
| best_oa_location.source.issn | 1556-5068 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1556-5068 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | SSRN Electronic Journal |
| best_oa_location.source.host_organization | https://openalex.org/I1318003438 |
| best_oa_location.source.host_organization_name | RELX Group (Netherlands) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | SSRN Electronic Journal |
| best_oa_location.landing_page_url | https://doi.org/10.2139/ssrn.4157416 |
| primary_location.id | doi:10.2139/ssrn.4157416 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172589 |
| primary_location.source.issn | 1556-5068 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1556-5068 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SSRN Electronic Journal |
| primary_location.source.host_organization | https://openalex.org/I1318003438 |
| primary_location.source.host_organization_name | RELX Group (Netherlands) |
| primary_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | SSRN Electronic Journal |
| primary_location.landing_page_url | https://doi.org/10.2139/ssrn.4157416 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3188255841, https://openalex.org/W2974246495, https://openalex.org/W4245561250, https://openalex.org/W2969418413, https://openalex.org/W2991004173, https://openalex.org/W3159310484, https://openalex.org/W3044963443, https://openalex.org/W3040938591, https://openalex.org/W3045041747, https://openalex.org/W3020885311, https://openalex.org/W2929705482, https://openalex.org/W2984127070, https://openalex.org/W3047584724, https://openalex.org/W4384080852, https://openalex.org/W3098019734 |
| referenced_works_count | 15 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.75 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.72795684 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |