Comparative evaluation of geospatial scenario-based land change simulation models using landscape metrics Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1016/j.ecolind.2021.107810
Assessing the performance of land change simulation models is a critical step when predicting the future landscape scenario. The study was conducted in the district of Varanasi, Uttar Pradesh, India because the city being “the oldest living city in the world” attracts a vast population to reside here for short and long-term, leaving the city’s ecosystem more exposed to fragility and less resilient. In this work, an approach based on landscape metrics is introduced for comparing the performance of the ensemble models designed to simulate the landscape changes. A set of landscape metrics were applied in this study that offered comprehensive information on the performance of scenario-based simulation models from the viewpoint of the spatial ordering of simulated results against the related reference maps. A supervised support vector machine classification technique was applied to derive the LULC maps using Landsat satellite images of the year 1988, 2001, and 2015. The LULC maps of 1988 and 2001 were used to simulate the LULC scenario for 2015 using three Markov chain-based simulation models namely, multi-layer perceptron-Markov chain (MLP_Markov), cellular automata-Markov chain (CA_Markov), and stochastic-Markov chain (ST_Markov) respectively. The mean relative error (MRE), as a measure of the success of simulation models, was calculated for metrics. The MRE values at both the class and landscape levels were accounted for 21.63 and 11.45% respectively using MLP_Markov simulation model. The MRE values at both the class and landscape levels were accounted for 39.61 and 28.31% respectively using CA_Markov simulation model. The MRE values at both the class and landscape levels were accounted for 55.36 and 45.75% respectively using ST_Markov simulation model. The MRE values considered at class and landscape levels are further evaluated qualitatively for comparing the performance of simulation models. The results indicate that the MLP_Markov performed excellently, followed by CA_Markov and ST_Markov simulation models. This work showed an ordered and multi-level spatial evaluation of the models’ performance into the decision-making process of selecting the optimum approach among them. Landscape metrics as a vital characteristic of the utilized method, employ the maximum potential of the reference and simulated layers for a performance evaluation process. It extends the insight into the main strengths and drawbacks of a specific model when simulating the spatio-temporal pattern. The quantified information of transition among landscape categories also provides land policy managers a better perception to build a sustainable city master plan.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.ecolind.2021.107810
- OA Status
- gold
- Cited By
- 75
- References
- 100
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3165608053
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3165608053Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.ecolind.2021.107810Digital Object Identifier
- Title
-
Comparative evaluation of geospatial scenario-based land change simulation models using landscape metricsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-05-22Full publication date if available
- Authors
-
Aman Arora, Manish Pandey, Varun Narayan Mishra, Ritesh Kumar, Praveen Kumar, Romulus Costache, Milap Punia, Liping DiList of authors in order
- Landing page
-
https://doi.org/10.1016/j.ecolind.2021.107810Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.ecolind.2021.107810Direct OA link when available
- Concepts
-
Markov chain, Computer science, Markov model, Population, Land cover, Data mining, Machine learning, Land use, Civil engineering, Engineering, Sociology, DemographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
75Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 11, 2024: 19, 2023: 20, 2022: 20, 2021: 5Per-year citation counts (last 5 years)
- References (count)
-
100Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3165608053 |
|---|---|
| doi | https://doi.org/10.1016/j.ecolind.2021.107810 |
| ids.doi | https://doi.org/10.1016/j.ecolind.2021.107810 |
| ids.mag | 3165608053 |
| ids.openalex | https://openalex.org/W3165608053 |
| fwci | 7.62010792 |
| type | article |
| title | Comparative evaluation of geospatial scenario-based land change simulation models using landscape metrics |
| biblio.issue | |
| biblio.volume | 128 |
| biblio.last_page | 107810 |
| biblio.first_page | 107810 |
| topics[0].id | https://openalex.org/T10226 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Land Use and Ecosystem Services |
| topics[1].id | https://openalex.org/T10111 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9909999966621399 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2303 |
| topics[1].subfield.display_name | Ecology |
| topics[1].display_name | Remote Sensing in Agriculture |
| topics[2].id | https://openalex.org/T10766 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9850000143051147 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Urban Heat Island Mitigation |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | USD |
| apc_list.value_usd | 2500 |
| apc_paid.value | 2500 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2500 |
| concepts[0].id | https://openalex.org/C98763669 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7524833679199219 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q176645 |
| concepts[0].display_name | Markov chain |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.578316330909729 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C163836022 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5482611060142517 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6771326 |
| concepts[2].display_name | Markov model |
| concepts[3].id | https://openalex.org/C2908647359 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4399586021900177 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[3].display_name | Population |
| concepts[4].id | https://openalex.org/C2780648208 |
| concepts[4].level | 3 |
| concepts[4].score | 0.42310088872909546 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3001793 |
| concepts[4].display_name | Land cover |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.37398412823677063 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.33653566241264343 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C4792198 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3187077045440674 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1165944 |
| concepts[7].display_name | Land use |
| concepts[8].id | https://openalex.org/C147176958 |
| concepts[8].level | 1 |
| concepts[8].score | 0.09592905640602112 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q77590 |
| concepts[8].display_name | Civil engineering |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.08201637864112854 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C144024400 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[10].display_name | Sociology |
| concepts[11].id | https://openalex.org/C149923435 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[11].display_name | Demography |
| keywords[0].id | https://openalex.org/keywords/markov-chain |
| keywords[0].score | 0.7524833679199219 |
| keywords[0].display_name | Markov chain |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.578316330909729 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/markov-model |
| keywords[2].score | 0.5482611060142517 |
| keywords[2].display_name | Markov model |
| keywords[3].id | https://openalex.org/keywords/population |
| keywords[3].score | 0.4399586021900177 |
| keywords[3].display_name | Population |
| keywords[4].id | https://openalex.org/keywords/land-cover |
| keywords[4].score | 0.42310088872909546 |
| keywords[4].display_name | Land cover |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.37398412823677063 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.33653566241264343 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/land-use |
| keywords[7].score | 0.3187077045440674 |
| keywords[7].display_name | Land use |
| keywords[8].id | https://openalex.org/keywords/civil-engineering |
| keywords[8].score | 0.09592905640602112 |
| keywords[8].display_name | Civil engineering |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.08201637864112854 |
| keywords[9].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1016/j.ecolind.2021.107810 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S194154261 |
| locations[0].source.issn | 1470-160X, 1872-7034 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1470-160X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Ecological Indicators |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Ecological Indicators |
| locations[0].landing_page_url | https://doi.org/10.1016/j.ecolind.2021.107810 |
| locations[1].id | pmh:oai:doaj.org/article:4d918119460f4fe99a7c97a210e2bb5a |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Ecological Indicators, Vol 128, Iss , Pp 107810- (2021) |
| locations[1].landing_page_url | https://doaj.org/article/4d918119460f4fe99a7c97a210e2bb5a |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5101424427 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9396-8720 |
| authorships[0].author.display_name | Aman Arora |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I101407740 |
| authorships[0].affiliations[0].raw_affiliation_string | University Center for Research & Development (UCRD), Chandigarh University, Mohali 140413, India |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I91357014 |
| authorships[0].affiliations[1].raw_affiliation_string | DST- Mahamana Centre of Excellence in Climate Change Research, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India |
| authorships[0].institutions[0].id | https://openalex.org/I91357014 |
| authorships[0].institutions[0].ror | https://ror.org/04cdn2797 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I91357014 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Banaras Hindu University |
| authorships[0].institutions[1].id | https://openalex.org/I101407740 |
| authorships[0].institutions[1].ror | https://ror.org/05t4pvx35 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I101407740 |
| authorships[0].institutions[1].country_code | IN |
| authorships[0].institutions[1].display_name | Chandigarh University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Aman Arora |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | DST- Mahamana Centre of Excellence in Climate Change Research, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India, University Center for Research & Development (UCRD), Chandigarh University, Mohali 140413, India |
| authorships[1].author.id | https://openalex.org/A5070972968 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8291-2043 |
| authorships[1].author.display_name | Manish Pandey |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I101407740 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Civil Engineering, Chandigarh University, Mohali 140413, India |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I101407740 |
| authorships[1].affiliations[1].raw_affiliation_string | University Center for Research & Development (UCRD), Chandigarh University, Mohali 140413, India |
| authorships[1].institutions[0].id | https://openalex.org/I101407740 |
| authorships[1].institutions[0].ror | https://ror.org/05t4pvx35 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I101407740 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Chandigarh University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Manish Pandey |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Civil Engineering, Chandigarh University, Mohali 140413, India, University Center for Research & Development (UCRD), Chandigarh University, Mohali 140413, India |
| authorships[2].author.id | https://openalex.org/A5004254348 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4336-8038 |
| authorships[2].author.display_name | Varun Narayan Mishra |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I91894341 |
| authorships[2].affiliations[0].raw_affiliation_string | Centre for Climate Change and Water Research, Suresh Gyan Vihar University, Jaipur 302017, India |
| authorships[2].institutions[0].id | https://openalex.org/I91894341 |
| authorships[2].institutions[0].ror | https://ror.org/048q3sh29 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I91894341 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Gyan Vihar University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Varun Narayan Mishra |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Centre for Climate Change and Water Research, Suresh Gyan Vihar University, Jaipur 302017, India |
| authorships[3].author.id | https://openalex.org/A5103146286 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4746-7746 |
| authorships[3].author.display_name | Ritesh Kumar |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I24927338 |
| authorships[3].affiliations[0].raw_affiliation_string | Haryana Space Applications Centre (HARSAC), CCS HAU Campus, Hisar 125004, India |
| authorships[3].institutions[0].id | https://openalex.org/I24927338 |
| authorships[3].institutions[0].ror | https://ror.org/0261g6j35 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I24927338 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Chaudhary Charan Singh Haryana Agricultural University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ritesh Kumar |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Haryana Space Applications Centre (HARSAC), CCS HAU Campus, Hisar 125004, India |
| authorships[4].author.id | https://openalex.org/A5054998045 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5404-5373 |
| authorships[4].author.display_name | Praveen Kumar |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Geography, K.M.C. Language University, Lucknow 226013, India |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Praveen Kumar Rai |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Geography, K.M.C. Language University, Lucknow 226013, India |
| authorships[5].author.id | https://openalex.org/A5066655516 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6876-8572 |
| authorships[5].author.display_name | Romulus Costache |
| authorships[5].countries | RO |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I3123573182 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Civil Engineering, Transilvania University of Brasov, 5, Turnului Str, 500152 Brasov, Romania |
| authorships[5].institutions[0].id | https://openalex.org/I3123573182 |
| authorships[5].institutions[0].ror | https://ror.org/01cg9ws23 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I3123573182 |
| authorships[5].institutions[0].country_code | RO |
| authorships[5].institutions[0].display_name | Transylvania University of Brașov |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Romulus Costache |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Civil Engineering, Transilvania University of Brasov, 5, Turnului Str, 500152 Brasov, Romania |
| authorships[6].author.id | https://openalex.org/A5064494337 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4830-2265 |
| authorships[6].author.display_name | Milap Punia |
| authorships[6].countries | IN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I152429107 |
| authorships[6].affiliations[0].raw_affiliation_string | Centre for the Study of Regional Development, Jawaharlal Nehru University, New Delhi 110067, India |
| authorships[6].institutions[0].id | https://openalex.org/I152429107 |
| authorships[6].institutions[0].ror | https://ror.org/0567v8t28 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I152429107 |
| authorships[6].institutions[0].country_code | IN |
| authorships[6].institutions[0].display_name | Jawaharlal Nehru University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Milap Punia |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Centre for the Study of Regional Development, Jawaharlal Nehru University, New Delhi 110067, India |
| authorships[7].author.id | https://openalex.org/A5012116347 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-3953-9965 |
| authorships[7].author.display_name | Liping Di |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I162714631 |
| authorships[7].affiliations[0].raw_affiliation_string | Center for Spatial Information Science and Systems, George Mason University, 4400 University Drive, MSN 6E1 Fairfax, VA 22030, USA |
| authorships[7].institutions[0].id | https://openalex.org/I162714631 |
| authorships[7].institutions[0].ror | https://ror.org/02jqj7156 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I162714631 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | George Mason University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Liping Di |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Center for Spatial Information Science and Systems, George Mason University, 4400 University Drive, MSN 6E1 Fairfax, VA 22030, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.ecolind.2021.107810 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Comparative evaluation of geospatial scenario-based land change simulation models using landscape metrics |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10226 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Land Use and Ecosystem Services |
| related_works | https://openalex.org/W2084326697, https://openalex.org/W2027903142, https://openalex.org/W2354322608, https://openalex.org/W2804608325, https://openalex.org/W2077211377, https://openalex.org/W2186675474, https://openalex.org/W2387462590, https://openalex.org/W2056274461, https://openalex.org/W2368739446, https://openalex.org/W3133615129 |
| cited_by_count | 75 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 11 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 19 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 20 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 20 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.ecolind.2021.107810 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S194154261 |
| best_oa_location.source.issn | 1470-160X, 1872-7034 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1470-160X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Ecological Indicators |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Ecological Indicators |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.ecolind.2021.107810 |
| primary_location.id | doi:10.1016/j.ecolind.2021.107810 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S194154261 |
| primary_location.source.issn | 1470-160X, 1872-7034 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1470-160X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Ecological Indicators |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Ecological Indicators |
| primary_location.landing_page_url | https://doi.org/10.1016/j.ecolind.2021.107810 |
| publication_date | 2021-05-22 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W1977193679, https://openalex.org/W2069560582, https://openalex.org/W2465055319, https://openalex.org/W2042967898, https://openalex.org/W2985724334, https://openalex.org/W2943641382, https://openalex.org/W2157528778, https://openalex.org/W2068618591, https://openalex.org/W2067678428, https://openalex.org/W2120533912, https://openalex.org/W2024681947, https://openalex.org/W2765326184, https://openalex.org/W3006014403, https://openalex.org/W2899288979, https://openalex.org/W2809445783, https://openalex.org/W2744266836, https://openalex.org/W2118154752, https://openalex.org/W6699951505, https://openalex.org/W2773674582, https://openalex.org/W2153820558, https://openalex.org/W2744366900, https://openalex.org/W2087432101, https://openalex.org/W2904607318, https://openalex.org/W3005299837, https://openalex.org/W2893744532, https://openalex.org/W2792263672, https://openalex.org/W1954493094, https://openalex.org/W7055690342, https://openalex.org/W2922053312, https://openalex.org/W2068735183, https://openalex.org/W1968440136, https://openalex.org/W6749971499, https://openalex.org/W2131022626, https://openalex.org/W2075381982, https://openalex.org/W1995458675, https://openalex.org/W3012140548, https://openalex.org/W3011472461, https://openalex.org/W2986155042, https://openalex.org/W2141274680, https://openalex.org/W2325704522, https://openalex.org/W2803640886, https://openalex.org/W2109647617, https://openalex.org/W2009958490, https://openalex.org/W2600341556, https://openalex.org/W2802209415, https://openalex.org/W6765454379, https://openalex.org/W2810893806, https://openalex.org/W2959490046, https://openalex.org/W3003820510, https://openalex.org/W3203029324, https://openalex.org/W2015731949, https://openalex.org/W2047568705, https://openalex.org/W4237630672, https://openalex.org/W2104896032, https://openalex.org/W2127728347, https://openalex.org/W2011438884, https://openalex.org/W2041628697, https://openalex.org/W2002984145, https://openalex.org/W2016022862, https://openalex.org/W6606509625, https://openalex.org/W6605531080, https://openalex.org/W6732390616, https://openalex.org/W2286014961, https://openalex.org/W1024923660, https://openalex.org/W4235505081, https://openalex.org/W2654996463, https://openalex.org/W272886174, https://openalex.org/W2043773226, https://openalex.org/W3043927353, https://openalex.org/W2910422106, https://openalex.org/W6645243953, https://openalex.org/W2137046486, https://openalex.org/W2059920547, https://openalex.org/W2044196446, https://openalex.org/W2913911554, https://openalex.org/W2051512952, https://openalex.org/W2158431765, https://openalex.org/W2167415155, https://openalex.org/W2740555258, https://openalex.org/W2954977388, https://openalex.org/W2334297137, https://openalex.org/W2797134365, https://openalex.org/W1494131642, https://openalex.org/W118105661, https://openalex.org/W2972413920, https://openalex.org/W4231672967, https://openalex.org/W3127030915, https://openalex.org/W2579092610, https://openalex.org/W1979248264, https://openalex.org/W2319538330, https://openalex.org/W2809612368, https://openalex.org/W2410671994, https://openalex.org/W159926040, https://openalex.org/W2765736339, https://openalex.org/W1550461405, https://openalex.org/W3021072959, https://openalex.org/W1968121043, https://openalex.org/W1482289351, https://openalex.org/W164526264, https://openalex.org/W2030513563 |
| referenced_works_count | 100 |
| abstract_inverted_index.A | 88, 124 |
| abstract_inverted_index.a | 9, 42, 191, 328, 346, 361, 382, 387 |
| abstract_inverted_index.In | 63 |
| abstract_inverted_index.It | 350 |
| abstract_inverted_index.an | 66, 304 |
| abstract_inverted_index.as | 190, 327 |
| abstract_inverted_index.at | 206, 227, 248, 270 |
| abstract_inverted_index.by | 295 |
| abstract_inverted_index.in | 22, 38, 95 |
| abstract_inverted_index.is | 8, 72 |
| abstract_inverted_index.of | 3, 25, 78, 90, 105, 112, 116, 142, 152, 193, 196, 283, 310, 318, 331, 339, 360, 372 |
| abstract_inverted_index.on | 69, 102 |
| abstract_inverted_index.to | 45, 58, 83, 133, 158, 385 |
| abstract_inverted_index.MRE | 204, 225, 246, 267 |
| abstract_inverted_index.The | 18, 149, 185, 203, 224, 245, 266, 286, 369 |
| abstract_inverted_index.and | 50, 60, 147, 154, 180, 210, 217, 231, 238, 252, 259, 272, 297, 306, 342, 358 |
| abstract_inverted_index.are | 275 |
| abstract_inverted_index.for | 48, 74, 163, 201, 215, 236, 257, 279, 345 |
| abstract_inverted_index.set | 89 |
| abstract_inverted_index.the | 1, 14, 23, 31, 39, 53, 76, 79, 85, 103, 110, 113, 120, 135, 143, 160, 194, 208, 229, 250, 281, 290, 311, 315, 320, 332, 336, 340, 352, 355, 366 |
| abstract_inverted_index.was | 20, 131, 199 |
| abstract_inverted_index.1988 | 153 |
| abstract_inverted_index.2001 | 155 |
| abstract_inverted_index.2015 | 164 |
| abstract_inverted_index.LULC | 136, 150, 161 |
| abstract_inverted_index.This | 301 |
| abstract_inverted_index.also | 377 |
| abstract_inverted_index.both | 207, 228, 249 |
| abstract_inverted_index.city | 32, 37, 389 |
| abstract_inverted_index.from | 109 |
| abstract_inverted_index.here | 47 |
| abstract_inverted_index.into | 314, 354 |
| abstract_inverted_index.land | 4, 379 |
| abstract_inverted_index.less | 61 |
| abstract_inverted_index.main | 356 |
| abstract_inverted_index.maps | 137, 151 |
| abstract_inverted_index.mean | 186 |
| abstract_inverted_index.more | 56 |
| abstract_inverted_index.step | 11 |
| abstract_inverted_index.that | 98, 289 |
| abstract_inverted_index.this | 64, 96 |
| abstract_inverted_index.used | 157 |
| abstract_inverted_index.vast | 43 |
| abstract_inverted_index.were | 93, 156, 213, 234, 255 |
| abstract_inverted_index.when | 12, 364 |
| abstract_inverted_index.work | 302 |
| abstract_inverted_index.year | 144 |
| abstract_inverted_index.1988, | 145 |
| abstract_inverted_index.2001, | 146 |
| abstract_inverted_index.2015. | 148 |
| abstract_inverted_index.21.63 | 216 |
| abstract_inverted_index.39.61 | 237 |
| abstract_inverted_index.55.36 | 258 |
| abstract_inverted_index.India | 29 |
| abstract_inverted_index.Uttar | 27 |
| abstract_inverted_index.among | 323, 374 |
| abstract_inverted_index.based | 68 |
| abstract_inverted_index.being | 33 |
| abstract_inverted_index.build | 386 |
| abstract_inverted_index.chain | 174, 178, 182 |
| abstract_inverted_index.class | 209, 230, 251, 271 |
| abstract_inverted_index.error | 188 |
| abstract_inverted_index.maps. | 123 |
| abstract_inverted_index.model | 363 |
| abstract_inverted_index.plan. | 391 |
| abstract_inverted_index.short | 49 |
| abstract_inverted_index.study | 19, 97 |
| abstract_inverted_index.them. | 324 |
| abstract_inverted_index.three | 166 |
| abstract_inverted_index.using | 138, 165, 220, 241, 262 |
| abstract_inverted_index.vital | 329 |
| abstract_inverted_index.work, | 65 |
| abstract_inverted_index.(MRE), | 189 |
| abstract_inverted_index.11.45% | 218 |
| abstract_inverted_index.28.31% | 239 |
| abstract_inverted_index.45.75% | 260 |
| abstract_inverted_index.Markov | 167 |
| abstract_inverted_index.better | 383 |
| abstract_inverted_index.change | 5 |
| abstract_inverted_index.derive | 134 |
| abstract_inverted_index.employ | 335 |
| abstract_inverted_index.future | 15 |
| abstract_inverted_index.images | 141 |
| abstract_inverted_index.layers | 344 |
| abstract_inverted_index.levels | 212, 233, 254, 274 |
| abstract_inverted_index.living | 36 |
| abstract_inverted_index.master | 390 |
| abstract_inverted_index.model. | 223, 244, 265 |
| abstract_inverted_index.models | 7, 81, 108, 170 |
| abstract_inverted_index.oldest | 35 |
| abstract_inverted_index.policy | 380 |
| abstract_inverted_index.reside | 46 |
| abstract_inverted_index.showed | 303 |
| abstract_inverted_index.values | 205, 226, 247, 268 |
| abstract_inverted_index.vector | 127 |
| abstract_inverted_index.“the | 34 |
| abstract_inverted_index.Landsat | 139 |
| abstract_inverted_index.against | 119 |
| abstract_inverted_index.applied | 94, 132 |
| abstract_inverted_index.because | 30 |
| abstract_inverted_index.exposed | 57 |
| abstract_inverted_index.extends | 351 |
| abstract_inverted_index.further | 276 |
| abstract_inverted_index.insight | 353 |
| abstract_inverted_index.leaving | 52 |
| abstract_inverted_index.machine | 128 |
| abstract_inverted_index.maximum | 337 |
| abstract_inverted_index.measure | 192 |
| abstract_inverted_index.method, | 334 |
| abstract_inverted_index.metrics | 71, 92, 326 |
| abstract_inverted_index.models, | 198 |
| abstract_inverted_index.models. | 285, 300 |
| abstract_inverted_index.namely, | 171 |
| abstract_inverted_index.offered | 99 |
| abstract_inverted_index.optimum | 321 |
| abstract_inverted_index.ordered | 305 |
| abstract_inverted_index.process | 317 |
| abstract_inverted_index.related | 121 |
| abstract_inverted_index.results | 118, 287 |
| abstract_inverted_index.spatial | 114, 308 |
| abstract_inverted_index.success | 195 |
| abstract_inverted_index.support | 126 |
| abstract_inverted_index.Pradesh, | 28 |
| abstract_inverted_index.approach | 67, 322 |
| abstract_inverted_index.attracts | 41 |
| abstract_inverted_index.cellular | 176 |
| abstract_inverted_index.changes. | 87 |
| abstract_inverted_index.city’s | 54 |
| abstract_inverted_index.critical | 10 |
| abstract_inverted_index.designed | 82 |
| abstract_inverted_index.district | 24 |
| abstract_inverted_index.ensemble | 80 |
| abstract_inverted_index.followed | 294 |
| abstract_inverted_index.indicate | 288 |
| abstract_inverted_index.managers | 381 |
| abstract_inverted_index.metrics. | 202 |
| abstract_inverted_index.ordering | 115 |
| abstract_inverted_index.pattern. | 368 |
| abstract_inverted_index.process. | 349 |
| abstract_inverted_index.provides | 378 |
| abstract_inverted_index.relative | 187 |
| abstract_inverted_index.scenario | 162 |
| abstract_inverted_index.simulate | 84, 159 |
| abstract_inverted_index.specific | 362 |
| abstract_inverted_index.utilized | 333 |
| abstract_inverted_index.world” | 40 |
| abstract_inverted_index.Assessing | 0 |
| abstract_inverted_index.CA_Markov | 242, 296 |
| abstract_inverted_index.Landscape | 325 |
| abstract_inverted_index.ST_Markov | 263, 298 |
| abstract_inverted_index.Varanasi, | 26 |
| abstract_inverted_index.accounted | 214, 235, 256 |
| abstract_inverted_index.comparing | 75, 280 |
| abstract_inverted_index.conducted | 21 |
| abstract_inverted_index.drawbacks | 359 |
| abstract_inverted_index.ecosystem | 55 |
| abstract_inverted_index.evaluated | 277 |
| abstract_inverted_index.fragility | 59 |
| abstract_inverted_index.landscape | 16, 70, 86, 91, 211, 232, 253, 273, 375 |
| abstract_inverted_index.models’ | 312 |
| abstract_inverted_index.performed | 292 |
| abstract_inverted_index.potential | 338 |
| abstract_inverted_index.reference | 122, 341 |
| abstract_inverted_index.satellite | 140 |
| abstract_inverted_index.scenario. | 17 |
| abstract_inverted_index.selecting | 319 |
| abstract_inverted_index.simulated | 117, 343 |
| abstract_inverted_index.strengths | 357 |
| abstract_inverted_index.technique | 130 |
| abstract_inverted_index.viewpoint | 111 |
| abstract_inverted_index.MLP_Markov | 221, 291 |
| abstract_inverted_index.calculated | 200 |
| abstract_inverted_index.categories | 376 |
| abstract_inverted_index.considered | 269 |
| abstract_inverted_index.evaluation | 309, 348 |
| abstract_inverted_index.introduced | 73 |
| abstract_inverted_index.long-term, | 51 |
| abstract_inverted_index.perception | 384 |
| abstract_inverted_index.population | 44 |
| abstract_inverted_index.predicting | 13 |
| abstract_inverted_index.quantified | 370 |
| abstract_inverted_index.resilient. | 62 |
| abstract_inverted_index.simulating | 365 |
| abstract_inverted_index.simulation | 6, 107, 169, 197, 222, 243, 264, 284, 299 |
| abstract_inverted_index.supervised | 125 |
| abstract_inverted_index.transition | 373 |
| abstract_inverted_index.(ST_Markov) | 183 |
| abstract_inverted_index.chain-based | 168 |
| abstract_inverted_index.information | 101, 371 |
| abstract_inverted_index.multi-layer | 172 |
| abstract_inverted_index.multi-level | 307 |
| abstract_inverted_index.performance | 2, 77, 104, 282, 313, 347 |
| abstract_inverted_index.sustainable | 388 |
| abstract_inverted_index.(CA_Markov), | 179 |
| abstract_inverted_index.excellently, | 293 |
| abstract_inverted_index.respectively | 219, 240, 261 |
| abstract_inverted_index.(MLP_Markov), | 175 |
| abstract_inverted_index.comprehensive | 100 |
| abstract_inverted_index.qualitatively | 278 |
| abstract_inverted_index.respectively. | 184 |
| abstract_inverted_index.characteristic | 330 |
| abstract_inverted_index.classification | 129 |
| abstract_inverted_index.scenario-based | 106 |
| abstract_inverted_index.automata-Markov | 177 |
| abstract_inverted_index.decision-making | 316 |
| abstract_inverted_index.spatio-temporal | 367 |
| abstract_inverted_index.perceptron-Markov | 173 |
| abstract_inverted_index.stochastic-Markov | 181 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5004254348 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I91894341 |
| citation_normalized_percentile.value | 0.97720896 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |