Comparative Evaluation of Machine Learning Algorithms for Forecasting Infectious Diseases: Insights from COVID-19 and Dengue Data Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.37547/ijmsphr/volume06issue08-05
This study evaluates the effectiveness of various machine learning (ML) models in forecasting COVID-19 case counts and predicting dengue outbreaks. Using publicly available datasets containing epidemiological data, climate variables, human mobility trends, and policy indicators, we trained and tested five ML algorithms: XGBoost, Random Forest, LSTM, SVM, and Logistic Regression. Our results demonstrate that XGBoost outperformed all other models, achieving the lowest mean absolute error (MAE = 1,079.2), root mean squared error (RMSE = 1,361.9), and the highest R² score (0.876) for COVID-19 forecasting. For dengue classification, XGBoost also led with the highest accuracy (91.3%), precision (88.7%), recall (90.8%), F1-score (89.7%), and ROC-AUC (0.949). Feature importance analysis confirmed that previous case counts, rainfall, humidity, vaccination rates, and mobility indices were the most influential variables. In terms of real-time application, XGBoost proved to be the most scalable and interpretable model, combining predictive strength with practical usability. These findings suggest that machine learning—particularly ensemble methods like XGBoost—can provide accurate, reliable, and real-time tools for infectious disease surveillance and early warning systems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.37547/ijmsphr/volume06issue08-05
- https://ijmsphr.com/index.php/ijmsphr/article/download/209/188/295
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413441455
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413441455Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.37547/ijmsphr/volume06issue08-05Digital Object Identifier
- Title
-
Comparative Evaluation of Machine Learning Algorithms for Forecasting Infectious Diseases: Insights from COVID-19 and Dengue DataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-17Full publication date if available
- Authors
-
Nur Nobe, Md. Murad Hossain, Md. Nazim Uddin Chy, Md. Emran Hossen, Ayesha AkterList of authors in order
- Landing page
-
https://doi.org/10.37547/ijmsphr/volume06issue08-05Publisher landing page
- PDF URL
-
https://ijmsphr.com/index.php/ijmsphr/article/download/209/188/295Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ijmsphr.com/index.php/ijmsphr/article/download/209/188/295Direct OA link when available
- Concepts
-
Dengue fever, Coronavirus disease 2019 (COVID-19), Computer science, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Machine learning, 2019-20 coronavirus outbreak, Artificial intelligence, Virology, Infectious disease (medical specialty), Medicine, Outbreak, Internal medicine, DiseaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413441455 |
|---|---|
| doi | https://doi.org/10.37547/ijmsphr/volume06issue08-05 |
| ids.doi | https://doi.org/10.37547/ijmsphr/volume06issue08-05 |
| ids.openalex | https://openalex.org/W4413441455 |
| fwci | 0.0 |
| type | article |
| title | Comparative Evaluation of Machine Learning Algorithms for Forecasting Infectious Diseases: Insights from COVID-19 and Dengue Data |
| biblio.issue | 08 |
| biblio.volume | 06 |
| biblio.last_page | 33 |
| biblio.first_page | 22 |
| topics[0].id | https://openalex.org/T10410 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9275000095367432 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2611 |
| topics[0].subfield.display_name | Modeling and Simulation |
| topics[0].display_name | COVID-19 epidemiological studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C533803919 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8854422569274902 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q30953 |
| concepts[0].display_name | Dengue fever |
| concepts[1].id | https://openalex.org/C3008058167 |
| concepts[1].level | 4 |
| concepts[1].score | 0.7330080270767212 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[1].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.48645278811454773 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C3007834351 |
| concepts[3].level | 5 |
| concepts[3].score | 0.4737449586391449 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q82069695 |
| concepts[3].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.464366614818573 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C3006700255 |
| concepts[5].level | 3 |
| concepts[5].score | 0.46367713809013367 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q81068910 |
| concepts[5].display_name | 2019-20 coronavirus outbreak |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.39751124382019043 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C159047783 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3903104066848755 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7215 |
| concepts[7].display_name | Virology |
| concepts[8].id | https://openalex.org/C524204448 |
| concepts[8].level | 3 |
| concepts[8].score | 0.377552330493927 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[8].display_name | Infectious disease (medical specialty) |
| concepts[9].id | https://openalex.org/C71924100 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2473040521144867 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[9].display_name | Medicine |
| concepts[10].id | https://openalex.org/C116675565 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0649099051952362 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3241045 |
| concepts[10].display_name | Outbreak |
| concepts[11].id | https://openalex.org/C126322002 |
| concepts[11].level | 1 |
| concepts[11].score | 0.05338895320892334 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[11].display_name | Internal medicine |
| concepts[12].id | https://openalex.org/C2779134260 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[12].display_name | Disease |
| keywords[0].id | https://openalex.org/keywords/dengue-fever |
| keywords[0].score | 0.8854422569274902 |
| keywords[0].display_name | Dengue fever |
| keywords[1].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[1].score | 0.7330080270767212 |
| keywords[1].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.48645278811454773 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/severe-acute-respiratory-syndrome-coronavirus-2 |
| keywords[3].score | 0.4737449586391449 |
| keywords[3].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.464366614818573 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/2019-20-coronavirus-outbreak |
| keywords[5].score | 0.46367713809013367 |
| keywords[5].display_name | 2019-20 coronavirus outbreak |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.39751124382019043 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/virology |
| keywords[7].score | 0.3903104066848755 |
| keywords[7].display_name | Virology |
| keywords[8].id | https://openalex.org/keywords/infectious-disease |
| keywords[8].score | 0.377552330493927 |
| keywords[8].display_name | Infectious disease (medical specialty) |
| keywords[9].id | https://openalex.org/keywords/medicine |
| keywords[9].score | 0.2473040521144867 |
| keywords[9].display_name | Medicine |
| keywords[10].id | https://openalex.org/keywords/outbreak |
| keywords[10].score | 0.0649099051952362 |
| keywords[10].display_name | Outbreak |
| keywords[11].id | https://openalex.org/keywords/internal-medicine |
| keywords[11].score | 0.05338895320892334 |
| keywords[11].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.37547/ijmsphr/volume06issue08-05 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387280594 |
| locations[0].source.issn | 2767-3774 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2767-3774 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Medical Science and Public Health Research |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | other-oa |
| locations[0].pdf_url | https://ijmsphr.com/index.php/ijmsphr/article/download/209/188/295 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/other-oa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Medical Science and Public Health Research |
| locations[0].landing_page_url | https://doi.org/10.37547/ijmsphr/volume06issue08-05 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5093603309 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Nur Nobe |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nur Nobe |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5070966188 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8224-3246 |
| authorships[1].author.display_name | Md. Murad Hossain |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Md Refat Hossain |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5000055962 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2329-0867 |
| authorships[2].author.display_name | Md. Nazim Uddin Chy |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | MD Sajedul Karim Chy |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5113376524 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Md. Emran Hossen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Md. Emran Hossen |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5033394258 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Ayesha Akter |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | ARJINA AKTER |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ijmsphr.com/index.php/ijmsphr/article/download/209/188/295 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-08-23T00:00:00 |
| display_name | Comparative Evaluation of Machine Learning Algorithms for Forecasting Infectious Diseases: Insights from COVID-19 and Dengue Data |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10410 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9275000095367432 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2611 |
| primary_topic.subfield.display_name | Modeling and Simulation |
| primary_topic.display_name | COVID-19 epidemiological studies |
| related_works | https://openalex.org/W3036314732, https://openalex.org/W3009669391, https://openalex.org/W3176864053, https://openalex.org/W3171943759, https://openalex.org/W4292098121, https://openalex.org/W3154141118, https://openalex.org/W4388896133, https://openalex.org/W3031607536, https://openalex.org/W4224279380, https://openalex.org/W4205317059 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.37547/ijmsphr/volume06issue08-05 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387280594 |
| best_oa_location.source.issn | 2767-3774 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2767-3774 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Medical Science and Public Health Research |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | https://ijmsphr.com/index.php/ijmsphr/article/download/209/188/295 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Medical Science and Public Health Research |
| best_oa_location.landing_page_url | https://doi.org/10.37547/ijmsphr/volume06issue08-05 |
| primary_location.id | doi:10.37547/ijmsphr/volume06issue08-05 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387280594 |
| primary_location.source.issn | 2767-3774 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2767-3774 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Medical Science and Public Health Research |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | other-oa |
| primary_location.pdf_url | https://ijmsphr.com/index.php/ijmsphr/article/download/209/188/295 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/other-oa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Medical Science and Public Health Research |
| primary_location.landing_page_url | https://doi.org/10.37547/ijmsphr/volume06issue08-05 |
| publication_date | 2025-08-17 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 66, 73 |
| abstract_inverted_index.In | 124 |
| abstract_inverted_index.ML | 40 |
| abstract_inverted_index.be | 132 |
| abstract_inverted_index.in | 11 |
| abstract_inverted_index.of | 5, 126 |
| abstract_inverted_index.to | 131 |
| abstract_inverted_index.we | 35 |
| abstract_inverted_index.For | 84 |
| abstract_inverted_index.Our | 50 |
| abstract_inverted_index.R² | 78 |
| abstract_inverted_index.all | 56 |
| abstract_inverted_index.and | 16, 32, 37, 47, 75, 101, 116, 136, 158, 165 |
| abstract_inverted_index.for | 81, 161 |
| abstract_inverted_index.led | 89 |
| abstract_inverted_index.the | 3, 60, 76, 91, 120, 133 |
| abstract_inverted_index.(MAE | 65 |
| abstract_inverted_index.(ML) | 9 |
| abstract_inverted_index.SVM, | 46 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.also | 88 |
| abstract_inverted_index.case | 14, 110 |
| abstract_inverted_index.five | 39 |
| abstract_inverted_index.like | 153 |
| abstract_inverted_index.mean | 62, 69 |
| abstract_inverted_index.most | 121, 134 |
| abstract_inverted_index.root | 68 |
| abstract_inverted_index.that | 53, 108, 148 |
| abstract_inverted_index.were | 119 |
| abstract_inverted_index.with | 90, 142 |
| abstract_inverted_index.(RMSE | 72 |
| abstract_inverted_index.LSTM, | 45 |
| abstract_inverted_index.These | 145 |
| abstract_inverted_index.Using | 20 |
| abstract_inverted_index.data, | 26 |
| abstract_inverted_index.early | 166 |
| abstract_inverted_index.error | 64, 71 |
| abstract_inverted_index.human | 29 |
| abstract_inverted_index.other | 57 |
| abstract_inverted_index.score | 79 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.terms | 125 |
| abstract_inverted_index.tools | 160 |
| abstract_inverted_index.Random | 43 |
| abstract_inverted_index.counts | 15 |
| abstract_inverted_index.dengue | 18, 85 |
| abstract_inverted_index.lowest | 61 |
| abstract_inverted_index.model, | 138 |
| abstract_inverted_index.models | 10 |
| abstract_inverted_index.policy | 33 |
| abstract_inverted_index.proved | 130 |
| abstract_inverted_index.rates, | 115 |
| abstract_inverted_index.recall | 97 |
| abstract_inverted_index.tested | 38 |
| abstract_inverted_index.(0.876) | 80 |
| abstract_inverted_index.Feature | 104 |
| abstract_inverted_index.Forest, | 44 |
| abstract_inverted_index.ROC-AUC | 102 |
| abstract_inverted_index.XGBoost | 54, 87, 129 |
| abstract_inverted_index.climate | 27 |
| abstract_inverted_index.counts, | 111 |
| abstract_inverted_index.disease | 163 |
| abstract_inverted_index.highest | 77, 92 |
| abstract_inverted_index.indices | 118 |
| abstract_inverted_index.machine | 7, 149 |
| abstract_inverted_index.methods | 152 |
| abstract_inverted_index.models, | 58 |
| abstract_inverted_index.provide | 155 |
| abstract_inverted_index.results | 51 |
| abstract_inverted_index.squared | 70 |
| abstract_inverted_index.suggest | 147 |
| abstract_inverted_index.trained | 36 |
| abstract_inverted_index.trends, | 31 |
| abstract_inverted_index.various | 6 |
| abstract_inverted_index.warning | 167 |
| abstract_inverted_index.(0.949). | 103 |
| abstract_inverted_index.(88.7%), | 96 |
| abstract_inverted_index.(89.7%), | 100 |
| abstract_inverted_index.(90.8%), | 98 |
| abstract_inverted_index.(91.3%), | 94 |
| abstract_inverted_index.COVID-19 | 13, 82 |
| abstract_inverted_index.F1-score | 99 |
| abstract_inverted_index.Logistic | 48 |
| abstract_inverted_index.XGBoost, | 42 |
| abstract_inverted_index.absolute | 63 |
| abstract_inverted_index.accuracy | 93 |
| abstract_inverted_index.analysis | 106 |
| abstract_inverted_index.datasets | 23 |
| abstract_inverted_index.ensemble | 151 |
| abstract_inverted_index.findings | 146 |
| abstract_inverted_index.learning | 8 |
| abstract_inverted_index.mobility | 30, 117 |
| abstract_inverted_index.previous | 109 |
| abstract_inverted_index.publicly | 21 |
| abstract_inverted_index.scalable | 135 |
| abstract_inverted_index.strength | 141 |
| abstract_inverted_index.systems. | 168 |
| abstract_inverted_index.1,079.2), | 67 |
| abstract_inverted_index.1,361.9), | 74 |
| abstract_inverted_index.accurate, | 156 |
| abstract_inverted_index.achieving | 59 |
| abstract_inverted_index.available | 22 |
| abstract_inverted_index.combining | 139 |
| abstract_inverted_index.confirmed | 107 |
| abstract_inverted_index.evaluates | 2 |
| abstract_inverted_index.humidity, | 113 |
| abstract_inverted_index.practical | 143 |
| abstract_inverted_index.precision | 95 |
| abstract_inverted_index.rainfall, | 112 |
| abstract_inverted_index.real-time | 127, 159 |
| abstract_inverted_index.reliable, | 157 |
| abstract_inverted_index.containing | 24 |
| abstract_inverted_index.importance | 105 |
| abstract_inverted_index.infectious | 162 |
| abstract_inverted_index.outbreaks. | 19 |
| abstract_inverted_index.predicting | 17 |
| abstract_inverted_index.predictive | 140 |
| abstract_inverted_index.usability. | 144 |
| abstract_inverted_index.variables, | 28 |
| abstract_inverted_index.variables. | 123 |
| abstract_inverted_index.Regression. | 49 |
| abstract_inverted_index.algorithms: | 41 |
| abstract_inverted_index.demonstrate | 52 |
| abstract_inverted_index.forecasting | 12 |
| abstract_inverted_index.indicators, | 34 |
| abstract_inverted_index.influential | 122 |
| abstract_inverted_index.vaccination | 114 |
| abstract_inverted_index.application, | 128 |
| abstract_inverted_index.forecasting. | 83 |
| abstract_inverted_index.outperformed | 55 |
| abstract_inverted_index.surveillance | 164 |
| abstract_inverted_index.XGBoost—can | 154 |
| abstract_inverted_index.effectiveness | 4 |
| abstract_inverted_index.interpretable | 137 |
| abstract_inverted_index.classification, | 86 |
| abstract_inverted_index.epidemiological | 25 |
| abstract_inverted_index.learning—particularly | 150 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.41932898 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |