Comparing ensemble strategies for deep learning: An application to facial expression recognition Article Swipe
Alessandro Renda
,
Marco Barsacchi
,
Alessio Bechini
,
Francesco Marcelloni
·
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1016/j.eswa.2019.06.025
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1016/j.eswa.2019.06.025
Related Topics
Concepts
Computer science
Artificial intelligence
Ensemble learning
Convolutional neural network
Context (archaeology)
Machine learning
Pattern recognition (psychology)
Random subspace method
Base (topology)
Limit (mathematics)
Feature (linguistics)
Task (project management)
Ensemble forecasting
Support vector machine
Mathematics
Biology
Economics
Paleontology
Philosophy
Mathematical analysis
Linguistics
Management
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.eswa.2019.06.025
- OA Status
- green
- Cited By
- 57
- References
- 86
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2953015817
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2953015817Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.eswa.2019.06.025Digital Object Identifier
- Title
-
Comparing ensemble strategies for deep learning: An application to facial expression recognitionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-06-14Full publication date if available
- Authors
-
Alessandro Renda, Marco Barsacchi, Alessio Bechini, Francesco MarcelloniList of authors in order
- Landing page
-
https://doi.org/10.1016/j.eswa.2019.06.025Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/11568/995501Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Ensemble learning, Convolutional neural network, Context (archaeology), Machine learning, Pattern recognition (psychology), Random subspace method, Base (topology), Limit (mathematics), Feature (linguistics), Task (project management), Ensemble forecasting, Support vector machine, Mathematics, Biology, Economics, Paleontology, Philosophy, Mathematical analysis, Linguistics, ManagementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
57Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 10, 2023: 13, 2022: 9, 2021: 9Per-year citation counts (last 5 years)
- References (count)
-
86Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2953015817 |
|---|---|
| doi | https://doi.org/10.1016/j.eswa.2019.06.025 |
| ids.doi | https://doi.org/10.1016/j.eswa.2019.06.025 |
| ids.mag | 2953015817 |
| ids.openalex | https://openalex.org/W2953015817 |
| fwci | 5.95815758 |
| type | article |
| title | Comparing ensemble strategies for deep learning: An application to facial expression recognition |
| awards[0].id | https://openalex.org/G2067080814 |
| awards[0].funder_id | https://openalex.org/F4320324499 |
| awards[0].display_name | |
| awards[0].funder_award_id | PRA_2017 |
| awards[0].funder_display_name | Università di Pisa |
| biblio.issue | |
| biblio.volume | 136 |
| biblio.last_page | 11 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10667 |
| topics[0].field.id | https://openalex.org/fields/32 |
| topics[0].field.display_name | Psychology |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3205 |
| topics[0].subfield.display_name | Experimental and Cognitive Psychology |
| topics[0].display_name | Emotion and Mood Recognition |
| topics[1].id | https://openalex.org/T10057 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9994000196456909 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Face and Expression Recognition |
| topics[2].id | https://openalex.org/T10429 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9970999956130981 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | EEG and Brain-Computer Interfaces |
| funders[0].id | https://openalex.org/F4320324499 |
| funders[0].ror | https://ror.org/03ad39j10 |
| funders[0].display_name | Università di Pisa |
| is_xpac | False |
| apc_list.value | 3220 |
| apc_list.currency | USD |
| apc_list.value_usd | 3220 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7757649421691895 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.689375638961792 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C45942800 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6273565888404846 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q245652 |
| concepts[2].display_name | Ensemble learning |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6086061000823975 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C2779343474 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6016015410423279 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[4].display_name | Context (archaeology) |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5923004746437073 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5507647395133972 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C106135958 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5466088652610779 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7291993 |
| concepts[7].display_name | Random subspace method |
| concepts[8].id | https://openalex.org/C42058472 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5367397665977478 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q810214 |
| concepts[8].display_name | Base (topology) |
| concepts[9].id | https://openalex.org/C151201525 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4719861149787903 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q177239 |
| concepts[9].display_name | Limit (mathematics) |
| concepts[10].id | https://openalex.org/C2776401178 |
| concepts[10].level | 2 |
| concepts[10].score | 0.46758127212524414 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[10].display_name | Feature (linguistics) |
| concepts[11].id | https://openalex.org/C2780451532 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4546204209327698 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[11].display_name | Task (project management) |
| concepts[12].id | https://openalex.org/C119898033 |
| concepts[12].level | 2 |
| concepts[12].score | 0.44775599241256714 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3433888 |
| concepts[12].display_name | Ensemble forecasting |
| concepts[13].id | https://openalex.org/C12267149 |
| concepts[13].level | 2 |
| concepts[13].score | 0.16175541281700134 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[13].display_name | Support vector machine |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.10844805836677551 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| concepts[16].id | https://openalex.org/C162324750 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[16].display_name | Economics |
| concepts[17].id | https://openalex.org/C151730666 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[17].display_name | Paleontology |
| concepts[18].id | https://openalex.org/C138885662 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[18].display_name | Philosophy |
| concepts[19].id | https://openalex.org/C134306372 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[19].display_name | Mathematical analysis |
| concepts[20].id | https://openalex.org/C41895202 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[20].display_name | Linguistics |
| concepts[21].id | https://openalex.org/C187736073 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[21].display_name | Management |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7757649421691895 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.689375638961792 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/ensemble-learning |
| keywords[2].score | 0.6273565888404846 |
| keywords[2].display_name | Ensemble learning |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.6086061000823975 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/context |
| keywords[4].score | 0.6016015410423279 |
| keywords[4].display_name | Context (archaeology) |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.5923004746437073 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.5507647395133972 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/random-subspace-method |
| keywords[7].score | 0.5466088652610779 |
| keywords[7].display_name | Random subspace method |
| keywords[8].id | https://openalex.org/keywords/base |
| keywords[8].score | 0.5367397665977478 |
| keywords[8].display_name | Base (topology) |
| keywords[9].id | https://openalex.org/keywords/limit |
| keywords[9].score | 0.4719861149787903 |
| keywords[9].display_name | Limit (mathematics) |
| keywords[10].id | https://openalex.org/keywords/feature |
| keywords[10].score | 0.46758127212524414 |
| keywords[10].display_name | Feature (linguistics) |
| keywords[11].id | https://openalex.org/keywords/task |
| keywords[11].score | 0.4546204209327698 |
| keywords[11].display_name | Task (project management) |
| keywords[12].id | https://openalex.org/keywords/ensemble-forecasting |
| keywords[12].score | 0.44775599241256714 |
| keywords[12].display_name | Ensemble forecasting |
| keywords[13].id | https://openalex.org/keywords/support-vector-machine |
| keywords[13].score | 0.16175541281700134 |
| keywords[13].display_name | Support vector machine |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.10844805836677551 |
| keywords[14].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1016/j.eswa.2019.06.025 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S13144211 |
| locations[0].source.issn | 0957-4174, 1873-6793 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0957-4174 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Expert Systems with Applications |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Expert Systems with Applications |
| locations[0].landing_page_url | https://doi.org/10.1016/j.eswa.2019.06.025 |
| locations[1].id | pmh:oai:arpi.unipi.it:11568/995501 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4377196265 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | CINECA IRIS Institutial research information system (University of Pisa) |
| locations[1].source.host_organization | https://openalex.org/I108290504 |
| locations[1].source.host_organization_name | University of Pisa |
| locations[1].source.host_organization_lineage | https://openalex.org/I108290504 |
| locations[1].license | cc-by-nc-nd |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://hdl.handle.net/11568/995501 |
| locations[2].id | pmh:oai:arts.units.it:11368/3111373 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306400480 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | ArTS Archivio della ricerca di Trieste (University of Trieste https://www.units.it/) |
| locations[2].source.host_organization | https://openalex.org/I142444530 |
| locations[2].source.host_organization_name | University of Trieste |
| locations[2].source.host_organization_lineage | https://openalex.org/I142444530 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | info:eu-repo/semantics/article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://hdl.handle.net/11368/3111373 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5079169024 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0482-5048 |
| authorships[0].author.display_name | Alessandro Renda |
| authorships[0].countries | IT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I45084792 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Florence, Dept. of Information Engineering, Via di Santa Marta, 3, Firenze, 50139, Italy |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I108290504 |
| authorships[0].affiliations[1].raw_affiliation_string | University of Pisa, Dept. of Information Engineering, Largo L. Lazzarino, Pisa, 56122, Italy |
| authorships[0].institutions[0].id | https://openalex.org/I45084792 |
| authorships[0].institutions[0].ror | https://ror.org/04jr1s763 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I45084792 |
| authorships[0].institutions[0].country_code | IT |
| authorships[0].institutions[0].display_name | University of Florence |
| authorships[0].institutions[1].id | https://openalex.org/I108290504 |
| authorships[0].institutions[1].ror | https://ror.org/03ad39j10 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I108290504 |
| authorships[0].institutions[1].country_code | IT |
| authorships[0].institutions[1].display_name | University of Pisa |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alessandro Renda |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Florence, Dept. of Information Engineering, Via di Santa Marta, 3, Firenze, 50139, Italy, University of Pisa, Dept. of Information Engineering, Largo L. Lazzarino, Pisa, 56122, Italy |
| authorships[1].author.id | https://openalex.org/A5063324971 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7457-7393 |
| authorships[1].author.display_name | Marco Barsacchi |
| authorships[1].countries | IT |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I45084792 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Florence, Dept. of Information Engineering, Via di Santa Marta, 3, Firenze, 50139, Italy |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I108290504 |
| authorships[1].affiliations[1].raw_affiliation_string | University of Pisa, Dept. of Information Engineering, Largo L. Lazzarino, Pisa, 56122, Italy |
| authorships[1].institutions[0].id | https://openalex.org/I45084792 |
| authorships[1].institutions[0].ror | https://ror.org/04jr1s763 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I45084792 |
| authorships[1].institutions[0].country_code | IT |
| authorships[1].institutions[0].display_name | University of Florence |
| authorships[1].institutions[1].id | https://openalex.org/I108290504 |
| authorships[1].institutions[1].ror | https://ror.org/03ad39j10 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I108290504 |
| authorships[1].institutions[1].country_code | IT |
| authorships[1].institutions[1].display_name | University of Pisa |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Marco Barsacchi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Florence, Dept. of Information Engineering, Via di Santa Marta, 3, Firenze, 50139, Italy, University of Pisa, Dept. of Information Engineering, Largo L. Lazzarino, Pisa, 56122, Italy |
| authorships[2].author.id | https://openalex.org/A5007774813 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5951-1265 |
| authorships[2].author.display_name | Alessio Bechini |
| authorships[2].countries | IT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I108290504 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Pisa, Dept. of Information Engineering, Largo L. Lazzarino, Pisa, 56122, Italy |
| authorships[2].institutions[0].id | https://openalex.org/I108290504 |
| authorships[2].institutions[0].ror | https://ror.org/03ad39j10 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I108290504 |
| authorships[2].institutions[0].country_code | IT |
| authorships[2].institutions[0].display_name | University of Pisa |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Alessio Bechini |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Pisa, Dept. of Information Engineering, Largo L. Lazzarino, Pisa, 56122, Italy |
| authorships[3].author.id | https://openalex.org/A5057031606 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5895-876X |
| authorships[3].author.display_name | Francesco Marcelloni |
| authorships[3].countries | IT |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I108290504 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Pisa, Dept. of Information Engineering, Largo L. Lazzarino, Pisa, 56122, Italy |
| authorships[3].institutions[0].id | https://openalex.org/I108290504 |
| authorships[3].institutions[0].ror | https://ror.org/03ad39j10 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I108290504 |
| authorships[3].institutions[0].country_code | IT |
| authorships[3].institutions[0].display_name | University of Pisa |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Francesco Marcelloni |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | University of Pisa, Dept. of Information Engineering, Largo L. Lazzarino, Pisa, 56122, Italy |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://hdl.handle.net/11568/995501 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2019-06-27T00:00:00 |
| display_name | Comparing ensemble strategies for deep learning: An application to facial expression recognition |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10667 |
| primary_topic.field.id | https://openalex.org/fields/32 |
| primary_topic.field.display_name | Psychology |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3205 |
| primary_topic.subfield.display_name | Experimental and Cognitive Psychology |
| primary_topic.display_name | Emotion and Mood Recognition |
| related_works | https://openalex.org/W1981866886, https://openalex.org/W2052615004, https://openalex.org/W2794896638, https://openalex.org/W2891633941, https://openalex.org/W2046975922, https://openalex.org/W4361733484, https://openalex.org/W4256395896, https://openalex.org/W3202800081, https://openalex.org/W2057416691, https://openalex.org/W1760344465 |
| cited_by_count | 57 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 10 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 13 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 9 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 9 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 6 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arpi.unipi.it:11568/995501 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4377196265 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | CINECA IRIS Institutial research information system (University of Pisa) |
| best_oa_location.source.host_organization | https://openalex.org/I108290504 |
| best_oa_location.source.host_organization_name | University of Pisa |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I108290504 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://hdl.handle.net/11568/995501 |
| primary_location.id | doi:10.1016/j.eswa.2019.06.025 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S13144211 |
| primary_location.source.issn | 0957-4174, 1873-6793 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0957-4174 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Expert Systems with Applications |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Expert Systems with Applications |
| primary_location.landing_page_url | https://doi.org/10.1016/j.eswa.2019.06.025 |
| publication_date | 2019-06-14 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2039774423, https://openalex.org/W4231109964, https://openalex.org/W4212883601, https://openalex.org/W2167055186, https://openalex.org/W6639736602, https://openalex.org/W6786039772, https://openalex.org/W7074219614, https://openalex.org/W1981918162, https://openalex.org/W1977844243, https://openalex.org/W2003238582, https://openalex.org/W2145533960, https://openalex.org/W2938665958, https://openalex.org/W2058307353, https://openalex.org/W2744909235, https://openalex.org/W6634926629, https://openalex.org/W2912990735, https://openalex.org/W2770456481, https://openalex.org/W6687483927, https://openalex.org/W6637104369, https://openalex.org/W6606790566, https://openalex.org/W6675409298, https://openalex.org/W6737136810, https://openalex.org/W6687338485, https://openalex.org/W6722864723, https://openalex.org/W2280370717, https://openalex.org/W6684191040, https://openalex.org/W2919115771, https://openalex.org/W6759638512, https://openalex.org/W6654536944, https://openalex.org/W2912628469, https://openalex.org/W2936772191, https://openalex.org/W6675505114, https://openalex.org/W6675736572, https://openalex.org/W2077943861, https://openalex.org/W6714888299, https://openalex.org/W2125610378, https://openalex.org/W1965947362, https://openalex.org/W6674330103, https://openalex.org/W6686164453, https://openalex.org/W2158684487, https://openalex.org/W2614041639, https://openalex.org/W2934832377, https://openalex.org/W6665813649, https://openalex.org/W2016461138, https://openalex.org/W2068908391, https://openalex.org/W2051297709, https://openalex.org/W6720216826, https://openalex.org/W6688057284, https://openalex.org/W2607306668, https://openalex.org/W2041616772, https://openalex.org/W2962784841, https://openalex.org/W2912934387, https://openalex.org/W3102246728, https://openalex.org/W1836465849, https://openalex.org/W2604272474, https://openalex.org/W2195207531, https://openalex.org/W4240768087, https://openalex.org/W2072128103, https://openalex.org/W2163605009, https://openalex.org/W2183341477, https://openalex.org/W1992227055, https://openalex.org/W2103943262, https://openalex.org/W2015861736, https://openalex.org/W2914484425, https://openalex.org/W166350813, https://openalex.org/W1899249567, https://openalex.org/W4235285477, https://openalex.org/W2486769752, https://openalex.org/W2099621636, https://openalex.org/W2557283755, https://openalex.org/W1649885719, https://openalex.org/W2291696949, https://openalex.org/W2095705004, https://openalex.org/W1686810756, https://openalex.org/W2566938590, https://openalex.org/W107968503, https://openalex.org/W2482957402, https://openalex.org/W2194775991, https://openalex.org/W2470957930, https://openalex.org/W4308947196, https://openalex.org/W1584590635, https://openalex.org/W2106115875, https://openalex.org/W2060907774, https://openalex.org/W1546411676, https://openalex.org/W1581809140, https://openalex.org/W2411243579 |
| referenced_works_count | 86 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5057031606 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I108290504 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/1 |
| sustainable_development_goals[0].score | 0.6399999856948853 |
| sustainable_development_goals[0].display_name | No poverty |
| citation_normalized_percentile.value | 0.95413064 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |