Comparing methods for risk prediction of multicategory outcomes: dichotomized logistic regression vs. multinomial logit regression Article Swipe
Lei Li
,
Matthew A. Rysavy
,
Georgiy Bobashev
,
Abhik Das
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1186/s12874-024-02389-x
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1186/s12874-024-02389-x
Estimating multiple logistic regression models of dichotomized outcomes may result in poorly calibrated predictions for an outcome with multiple ordinal categories. Multinomial continuation-ratio logit regression produces better calibrated predictions, constrains the sum of predicted probabilities to 100%, and has the advantages of simplicity in model interpretation, flexibility to include outcome category-specific predictors and random-effect terms for patient heterogeneity by hospital. It also accounts for mutual dependence among multiple categories and accommodates competing risks.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1186/s12874-024-02389-x
- OA Status
- gold
- Cited By
- 5
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403948869
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403948869Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1186/s12874-024-02389-xDigital Object Identifier
- Title
-
Comparing methods for risk prediction of multicategory outcomes: dichotomized logistic regression vs. multinomial logit regressionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-31Full publication date if available
- Authors
-
Lei Li, Matthew A. Rysavy, Georgiy Bobashev, Abhik DasList of authors in order
- Landing page
-
https://doi.org/10.1186/s12874-024-02389-xPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1186/s12874-024-02389-xDirect OA link when available
- Concepts
-
Multinomial logistic regression, Logistic regression, Statistics, Regression, Logit, Logistic model tree, Regression analysis, Ordered logit, Econometrics, Medicine, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403948869 |
|---|---|
| doi | https://doi.org/10.1186/s12874-024-02389-x |
| ids.doi | https://doi.org/10.1186/s12874-024-02389-x |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39482630 |
| ids.openalex | https://openalex.org/W4403948869 |
| fwci | 3.19389275 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D016015 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Logistic Models |
| mesh[2].qualifier_ui | Q000379 |
| mesh[2].descriptor_ui | D018570 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | methods |
| mesh[2].descriptor_name | Risk Assessment |
| mesh[3].qualifier_ui | Q000706 |
| mesh[3].descriptor_ui | D018570 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | statistics & numerical data |
| mesh[3].descriptor_name | Risk Assessment |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D005260 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Female |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D007231 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Infant, Newborn |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D011247 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Pregnancy |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D005260 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Female |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D006801 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Humans |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D007231 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Infant, Newborn |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D011247 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Pregnancy |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D016015 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Logistic Models |
| mesh[12].qualifier_ui | Q000379 |
| mesh[12].descriptor_ui | D018570 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | methods |
| mesh[12].descriptor_name | Risk Assessment |
| mesh[13].qualifier_ui | Q000706 |
| mesh[13].descriptor_ui | D018570 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | statistics & numerical data |
| mesh[13].descriptor_name | Risk Assessment |
| mesh[14].qualifier_ui | Q000175 |
| mesh[14].descriptor_ui | D065886 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | diagnosis |
| mesh[14].descriptor_name | Neurodevelopmental Disorders |
| mesh[15].qualifier_ui | Q000175 |
| mesh[15].descriptor_ui | D047928 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | diagnosis |
| mesh[15].descriptor_name | Premature Birth |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D005260 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Female |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D006801 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Humans |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D007231 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Infant, Newborn |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D011247 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Pregnancy |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D016015 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Logistic Models |
| mesh[21].qualifier_ui | Q000379 |
| mesh[21].descriptor_ui | D018570 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | methods |
| mesh[21].descriptor_name | Risk Assessment |
| mesh[22].qualifier_ui | Q000706 |
| mesh[22].descriptor_ui | D018570 |
| mesh[22].is_major_topic | True |
| mesh[22].qualifier_name | statistics & numerical data |
| mesh[22].descriptor_name | Risk Assessment |
| mesh[23].qualifier_ui | Q000175 |
| mesh[23].descriptor_ui | D065886 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | diagnosis |
| mesh[23].descriptor_name | Neurodevelopmental Disorders |
| mesh[24].qualifier_ui | Q000175 |
| mesh[24].descriptor_ui | D047928 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | diagnosis |
| mesh[24].descriptor_name | Premature Birth |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D005260 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Female |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D006801 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Humans |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D007231 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Infant, Newborn |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D011247 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Pregnancy |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D016015 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Logistic Models |
| mesh[30].qualifier_ui | Q000379 |
| mesh[30].descriptor_ui | D018570 |
| mesh[30].is_major_topic | True |
| mesh[30].qualifier_name | methods |
| mesh[30].descriptor_name | Risk Assessment |
| mesh[31].qualifier_ui | Q000706 |
| mesh[31].descriptor_ui | D018570 |
| mesh[31].is_major_topic | True |
| mesh[31].qualifier_name | statistics & numerical data |
| mesh[31].descriptor_name | Risk Assessment |
| mesh[32].qualifier_ui | Q000175 |
| mesh[32].descriptor_ui | D065886 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | diagnosis |
| mesh[32].descriptor_name | Neurodevelopmental Disorders |
| mesh[33].qualifier_ui | Q000175 |
| mesh[33].descriptor_ui | D047928 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | diagnosis |
| mesh[33].descriptor_name | Premature Birth |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D005260 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Female |
| mesh[35].qualifier_ui | |
| mesh[35].descriptor_ui | D006801 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | |
| mesh[35].descriptor_name | Humans |
| mesh[36].qualifier_ui | |
| mesh[36].descriptor_ui | D007231 |
| mesh[36].is_major_topic | False |
| mesh[36].qualifier_name | |
| mesh[36].descriptor_name | Infant, Newborn |
| mesh[37].qualifier_ui | |
| mesh[37].descriptor_ui | D011247 |
| mesh[37].is_major_topic | False |
| mesh[37].qualifier_name | |
| mesh[37].descriptor_name | Pregnancy |
| mesh[38].qualifier_ui | |
| mesh[38].descriptor_ui | D016015 |
| mesh[38].is_major_topic | False |
| mesh[38].qualifier_name | |
| mesh[38].descriptor_name | Logistic Models |
| mesh[39].qualifier_ui | Q000379 |
| mesh[39].descriptor_ui | D018570 |
| mesh[39].is_major_topic | True |
| mesh[39].qualifier_name | methods |
| mesh[39].descriptor_name | Risk Assessment |
| mesh[40].qualifier_ui | Q000706 |
| mesh[40].descriptor_ui | D018570 |
| mesh[40].is_major_topic | True |
| mesh[40].qualifier_name | statistics & numerical data |
| mesh[40].descriptor_name | Risk Assessment |
| mesh[41].qualifier_ui | Q000175 |
| mesh[41].descriptor_ui | D065886 |
| mesh[41].is_major_topic | False |
| mesh[41].qualifier_name | diagnosis |
| mesh[41].descriptor_name | Neurodevelopmental Disorders |
| mesh[42].qualifier_ui | Q000175 |
| mesh[42].descriptor_ui | D047928 |
| mesh[42].is_major_topic | False |
| mesh[42].qualifier_name | diagnosis |
| mesh[42].descriptor_name | Premature Birth |
| mesh[43].qualifier_ui | |
| mesh[43].descriptor_ui | D005260 |
| mesh[43].is_major_topic | False |
| mesh[43].qualifier_name | |
| mesh[43].descriptor_name | Female |
| mesh[44].qualifier_ui | |
| mesh[44].descriptor_ui | D006801 |
| mesh[44].is_major_topic | False |
| mesh[44].qualifier_name | |
| mesh[44].descriptor_name | Humans |
| mesh[45].qualifier_ui | |
| mesh[45].descriptor_ui | D007231 |
| mesh[45].is_major_topic | False |
| mesh[45].qualifier_name | |
| mesh[45].descriptor_name | Infant, Newborn |
| mesh[46].qualifier_ui | |
| mesh[46].descriptor_ui | D011247 |
| mesh[46].is_major_topic | False |
| mesh[46].qualifier_name | |
| mesh[46].descriptor_name | Pregnancy |
| mesh[47].qualifier_ui | |
| mesh[47].descriptor_ui | D016015 |
| mesh[47].is_major_topic | False |
| mesh[47].qualifier_name | |
| mesh[47].descriptor_name | Logistic Models |
| mesh[48].qualifier_ui | Q000379 |
| mesh[48].descriptor_ui | D018570 |
| mesh[48].is_major_topic | True |
| mesh[48].qualifier_name | methods |
| mesh[48].descriptor_name | Risk Assessment |
| mesh[49].qualifier_ui | Q000706 |
| mesh[49].descriptor_ui | D018570 |
| mesh[49].is_major_topic | True |
| mesh[49].qualifier_name | statistics & numerical data |
| mesh[49].descriptor_name | Risk Assessment |
| type | article |
| title | Comparing methods for risk prediction of multicategory outcomes: dichotomized logistic regression vs. multinomial logit regression |
| awards[0].id | https://openalex.org/G8294214410 |
| awards[0].funder_id | https://openalex.org/F4320337611 |
| awards[0].display_name | |
| awards[0].funder_award_id | U10 HD36790 |
| awards[0].funder_display_name | Eunice Kennedy Shriver National Institute of Child Health and Human Development |
| biblio.issue | 1 |
| biblio.volume | 24 |
| biblio.last_page | 261 |
| biblio.first_page | 261 |
| topics[0].id | https://openalex.org/T11303 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8849999904632568 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Bayesian Modeling and Causal Inference |
| topics[1].id | https://openalex.org/T12840 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.8288000226020813 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2727 |
| topics[1].subfield.display_name | Nephrology |
| topics[1].display_name | Renal function and acid-base balance |
| topics[2].id | https://openalex.org/T10549 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.8274999856948853 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2740 |
| topics[2].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[2].display_name | Neonatal Respiratory Health Research |
| funders[0].id | https://openalex.org/F4320337611 |
| funders[0].ror | https://ror.org/04byxyr05 |
| funders[0].display_name | Eunice Kennedy Shriver National Institute of Child Health and Human Development |
| is_xpac | False |
| apc_list.value | 1790 |
| apc_list.currency | GBP |
| apc_list.value_usd | 2195 |
| apc_paid.value | 1790 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 2195 |
| concepts[0].id | https://openalex.org/C117568660 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9216474890708923 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1650843 |
| concepts[0].display_name | Multinomial logistic regression |
| concepts[1].id | https://openalex.org/C151956035 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8426647186279297 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1132755 |
| concepts[1].display_name | Logistic regression |
| concepts[2].id | https://openalex.org/C105795698 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5859917402267456 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[2].display_name | Statistics |
| concepts[3].id | https://openalex.org/C83546350 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4898671805858612 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[3].display_name | Regression |
| concepts[4].id | https://openalex.org/C140331021 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4757268726825714 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1868104 |
| concepts[4].display_name | Logit |
| concepts[5].id | https://openalex.org/C61722155 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4746430814266205 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q6667643 |
| concepts[5].display_name | Logistic model tree |
| concepts[6].id | https://openalex.org/C152877465 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4634435474872589 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[6].display_name | Regression analysis |
| concepts[7].id | https://openalex.org/C87227347 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4386123716831207 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7100713 |
| concepts[7].display_name | Ordered logit |
| concepts[8].id | https://openalex.org/C149782125 |
| concepts[8].level | 1 |
| concepts[8].score | 0.36490288376808167 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[8].display_name | Econometrics |
| concepts[9].id | https://openalex.org/C71924100 |
| concepts[9].level | 0 |
| concepts[9].score | 0.35795295238494873 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[9].display_name | Medicine |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.2780902087688446 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/multinomial-logistic-regression |
| keywords[0].score | 0.9216474890708923 |
| keywords[0].display_name | Multinomial logistic regression |
| keywords[1].id | https://openalex.org/keywords/logistic-regression |
| keywords[1].score | 0.8426647186279297 |
| keywords[1].display_name | Logistic regression |
| keywords[2].id | https://openalex.org/keywords/statistics |
| keywords[2].score | 0.5859917402267456 |
| keywords[2].display_name | Statistics |
| keywords[3].id | https://openalex.org/keywords/regression |
| keywords[3].score | 0.4898671805858612 |
| keywords[3].display_name | Regression |
| keywords[4].id | https://openalex.org/keywords/logit |
| keywords[4].score | 0.4757268726825714 |
| keywords[4].display_name | Logit |
| keywords[5].id | https://openalex.org/keywords/logistic-model-tree |
| keywords[5].score | 0.4746430814266205 |
| keywords[5].display_name | Logistic model tree |
| keywords[6].id | https://openalex.org/keywords/regression-analysis |
| keywords[6].score | 0.4634435474872589 |
| keywords[6].display_name | Regression analysis |
| keywords[7].id | https://openalex.org/keywords/ordered-logit |
| keywords[7].score | 0.4386123716831207 |
| keywords[7].display_name | Ordered logit |
| keywords[8].id | https://openalex.org/keywords/econometrics |
| keywords[8].score | 0.36490288376808167 |
| keywords[8].display_name | Econometrics |
| keywords[9].id | https://openalex.org/keywords/medicine |
| keywords[9].score | 0.35795295238494873 |
| keywords[9].display_name | Medicine |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.2780902087688446 |
| keywords[10].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1186/s12874-024-02389-x |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S185874209 |
| locations[0].source.issn | 1471-2288 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1471-2288 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | BMC Medical Research Methodology |
| locations[0].source.host_organization | https://openalex.org/P4310320256 |
| locations[0].source.host_organization_name | BioMed Central |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | BioMed Central, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | BMC Medical Research Methodology |
| locations[0].landing_page_url | https://doi.org/10.1186/s12874-024-02389-x |
| locations[1].id | pmid:39482630 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | BMC medical research methodology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39482630 |
| locations[2].id | pmh:oai:doaj.org/article:4f42fd3197ba4e2e906d35de51038006 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | BMC Medical Research Methodology, Vol 24, Iss 1, Pp 1-8 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/4f42fd3197ba4e2e906d35de51038006 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11526521 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | BMC Med Res Methodol |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11526521 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100696013 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9887-0175 |
| authorships[0].author.display_name | Lei Li |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I180297670 |
| authorships[0].affiliations[0].raw_affiliation_string | Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, North Carolina, Research Triangle Park, North Carolina, USA |
| authorships[0].institutions[0].id | https://openalex.org/I180297670 |
| authorships[0].institutions[0].ror | https://ror.org/052tfza37 |
| authorships[0].institutions[0].type | nonprofit |
| authorships[0].institutions[0].lineage | https://openalex.org/I180297670 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | RTI International |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lei Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, North Carolina, Research Triangle Park, North Carolina, USA |
| authorships[1].author.id | https://openalex.org/A5066210216 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1209-6607 |
| authorships[1].author.display_name | Matthew A. Rysavy |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210152177, https://openalex.org/I919571938 |
| authorships[1].affiliations[0].raw_affiliation_string | Center for Clinical Research and Evidence-Based Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA |
| authorships[1].institutions[0].id | https://openalex.org/I4210152177 |
| authorships[1].institutions[0].ror | https://ror.org/05fnzzk18 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210152177 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Center for Clinical Research (United States) |
| authorships[1].institutions[1].id | https://openalex.org/I919571938 |
| authorships[1].institutions[1].ror | https://ror.org/03gds6c39 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I919571938 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | The University of Texas Health Science Center at Houston |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Matthew A. Rysavy |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Center for Clinical Research and Evidence-Based Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA |
| authorships[2].author.id | https://openalex.org/A5078220202 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2346-1400 |
| authorships[2].author.display_name | Georgiy Bobashev |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I180297670 |
| authorships[2].affiliations[0].raw_affiliation_string | Center of Data Sciences and Analytics, RTI International, Research Triangle Park, NC, USA |
| authorships[2].institutions[0].id | https://openalex.org/I180297670 |
| authorships[2].institutions[0].ror | https://ror.org/052tfza37 |
| authorships[2].institutions[0].type | nonprofit |
| authorships[2].institutions[0].lineage | https://openalex.org/I180297670 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | RTI International |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Georgiy Bobashev |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Center of Data Sciences and Analytics, RTI International, Research Triangle Park, NC, USA |
| authorships[3].author.id | https://openalex.org/A5040294264 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2722-0479 |
| authorships[3].author.display_name | Abhik Das |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I180297670 |
| authorships[3].affiliations[0].raw_affiliation_string | Biostatistics and Epidemiology Division, RTI International, Rockville, Maryland, United States |
| authorships[3].institutions[0].id | https://openalex.org/I180297670 |
| authorships[3].institutions[0].ror | https://ror.org/052tfza37 |
| authorships[3].institutions[0].type | nonprofit |
| authorships[3].institutions[0].lineage | https://openalex.org/I180297670 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | RTI International |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Abhik Das |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Biostatistics and Epidemiology Division, RTI International, Rockville, Maryland, United States |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1186/s12874-024-02389-x |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Comparing methods for risk prediction of multicategory outcomes: dichotomized logistic regression vs. multinomial logit regression |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11303 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8849999904632568 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Bayesian Modeling and Causal Inference |
| related_works | https://openalex.org/W2186978652, https://openalex.org/W2104977651, https://openalex.org/W1990286199, https://openalex.org/W4205583507, https://openalex.org/W2736706025, https://openalex.org/W1985068329, https://openalex.org/W4248368593, https://openalex.org/W44395528, https://openalex.org/W4211027790, https://openalex.org/W4236124836 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1186/s12874-024-02389-x |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S185874209 |
| best_oa_location.source.issn | 1471-2288 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1471-2288 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | BMC Medical Research Methodology |
| best_oa_location.source.host_organization | https://openalex.org/P4310320256 |
| best_oa_location.source.host_organization_name | BioMed Central |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | BioMed Central, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | BMC Medical Research Methodology |
| best_oa_location.landing_page_url | https://doi.org/10.1186/s12874-024-02389-x |
| primary_location.id | doi:10.1186/s12874-024-02389-x |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S185874209 |
| primary_location.source.issn | 1471-2288 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1471-2288 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | BMC Medical Research Methodology |
| primary_location.source.host_organization | https://openalex.org/P4310320256 |
| primary_location.source.host_organization_name | BioMed Central |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320256, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | BioMed Central, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | BMC Medical Research Methodology |
| primary_location.landing_page_url | https://doi.org/10.1186/s12874-024-02389-x |
| publication_date | 2024-10-31 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2022565404, https://openalex.org/W1965355188, https://openalex.org/W2996480032, https://openalex.org/W3152592480, https://openalex.org/W2999194198, https://openalex.org/W2164985658, https://openalex.org/W2076983043, https://openalex.org/W1965717729, https://openalex.org/W2560696316, https://openalex.org/W2119884930, https://openalex.org/W1553438539, https://openalex.org/W2023349900, https://openalex.org/W2130352976, https://openalex.org/W3009256696, https://openalex.org/W2129925362, https://openalex.org/W2074932800, https://openalex.org/W2150784319, https://openalex.org/W1940606697, https://openalex.org/W2041055738, https://openalex.org/W2017871126, https://openalex.org/W2587852293 |
| referenced_works_count | 21 |
| abstract_inverted_index.It | 60 |
| abstract_inverted_index.an | 15 |
| abstract_inverted_index.by | 58 |
| abstract_inverted_index.in | 10, 43 |
| abstract_inverted_index.of | 5, 32, 41 |
| abstract_inverted_index.to | 35, 47 |
| abstract_inverted_index.and | 37, 52, 69 |
| abstract_inverted_index.for | 14, 55, 63 |
| abstract_inverted_index.has | 38 |
| abstract_inverted_index.may | 8 |
| abstract_inverted_index.sum | 31 |
| abstract_inverted_index.the | 30, 39 |
| abstract_inverted_index.also | 61 |
| abstract_inverted_index.with | 17 |
| abstract_inverted_index.100%, | 36 |
| abstract_inverted_index.among | 66 |
| abstract_inverted_index.logit | 23 |
| abstract_inverted_index.model | 44 |
| abstract_inverted_index.terms | 54 |
| abstract_inverted_index.better | 26 |
| abstract_inverted_index.models | 4 |
| abstract_inverted_index.mutual | 64 |
| abstract_inverted_index.poorly | 11 |
| abstract_inverted_index.result | 9 |
| abstract_inverted_index.risks. | 72 |
| abstract_inverted_index.include | 48 |
| abstract_inverted_index.ordinal | 19 |
| abstract_inverted_index.outcome | 16, 49 |
| abstract_inverted_index.patient | 56 |
| abstract_inverted_index.accounts | 62 |
| abstract_inverted_index.logistic | 2 |
| abstract_inverted_index.multiple | 1, 18, 67 |
| abstract_inverted_index.outcomes | 7 |
| abstract_inverted_index.produces | 25 |
| abstract_inverted_index.competing | 71 |
| abstract_inverted_index.hospital. | 59 |
| abstract_inverted_index.predicted | 33 |
| abstract_inverted_index.Estimating | 0 |
| abstract_inverted_index.advantages | 40 |
| abstract_inverted_index.calibrated | 12, 27 |
| abstract_inverted_index.categories | 68 |
| abstract_inverted_index.constrains | 29 |
| abstract_inverted_index.dependence | 65 |
| abstract_inverted_index.predictors | 51 |
| abstract_inverted_index.regression | 3, 24 |
| abstract_inverted_index.simplicity | 42 |
| abstract_inverted_index.Multinomial | 21 |
| abstract_inverted_index.categories. | 20 |
| abstract_inverted_index.flexibility | 46 |
| abstract_inverted_index.predictions | 13 |
| abstract_inverted_index.accommodates | 70 |
| abstract_inverted_index.dichotomized | 6 |
| abstract_inverted_index.predictions, | 28 |
| abstract_inverted_index.heterogeneity | 57 |
| abstract_inverted_index.probabilities | 34 |
| abstract_inverted_index.random-effect | 53 |
| abstract_inverted_index.interpretation, | 45 |
| abstract_inverted_index.category-specific | 50 |
| abstract_inverted_index.continuation-ratio | 22 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5066210216 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I4210152177, https://openalex.org/I919571938 |
| citation_normalized_percentile.value | 0.90539395 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |