Comparing quality parameters obtained using destructive and optical methods in grading tomatoes Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.6084/m9.figshare.19922141
Optical methods for analysing fruit quality have various advantages compared to conventional methods, including not destroying the sample and the possibility of automating the quality control process. The aim of this study was to compare artificial neural networks developed from biological activity indices obtained using the biospeckle laser optical technique, and from physico-chemical variables obtained by conventional destructive techniques, through an evaluation of their precision in classifying ripe tomatoes, using as a reference an earlier classification carried out by visual inspection. A total of 150 tomatoes were used in the experiment, divided into three ripening stages. Multivariate principal component analysis was used to evaluate interaction of the variance within the groups of data obtained using the biospeckle laser technique and destructive laboratory methods. Two artificial neural networks were developed, the first generated using biological activity indices as input vectors, and the second using physico-chemical variables. The precision of the two neural networks was compared using the Kappa index and overall accuracy, and was based on a reference classification. The variation in ripening as a function of the biological activity indices was explained by the first principal component. The neural network generated from the biological activity indices showed the best performance in classifying the tomatoes into the three ripening stages, with a significant Kappa index and an overall accuracy of 67.5%.
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.6084/m9.figshare.19922141
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394288594
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394288594Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.6084/m9.figshare.19922141Digital Object Identifier
- Title
-
Comparing quality parameters obtained using destructive and optical methods in grading tomatoesWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
Thainara Rebelo da Silva, Anderson Gomide Costa, Juliana Lobo Paes, Marcus Vinícius Morais de Oliveira, Francisco de Assis de Carvalho PintoList of authors in order
- Landing page
-
https://doi.org/10.6084/m9.figshare.19922141Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.6084/m9.figshare.19922141Direct OA link when available
- Concepts
-
Grading (engineering), Computer science, Environmental science, Materials science, Statistics, Agricultural engineering, Mathematics, Pattern recognition (psychology), Artificial intelligence, Engineering, Civil engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394288594 |
|---|---|
| doi | https://doi.org/10.6084/m9.figshare.19922141 |
| ids.doi | https://doi.org/10.6084/m9.figshare.19922141 |
| ids.openalex | https://openalex.org/W4394288594 |
| fwci | |
| type | dataset |
| title | Comparing quality parameters obtained using destructive and optical methods in grading tomatoes |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14365 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9761000275611877 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Leaf Properties and Growth Measurement |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777286243 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7081518173217773 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5591926 |
| concepts[0].display_name | Grading (engineering) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.40248042345046997 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C39432304 |
| concepts[2].level | 0 |
| concepts[2].score | 0.37641334533691406 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[2].display_name | Environmental science |
| concepts[3].id | https://openalex.org/C192562407 |
| concepts[3].level | 0 |
| concepts[3].score | 0.36224913597106934 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[3].display_name | Materials science |
| concepts[4].id | https://openalex.org/C105795698 |
| concepts[4].level | 1 |
| concepts[4].score | 0.35983043909072876 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[4].display_name | Statistics |
| concepts[5].id | https://openalex.org/C88463610 |
| concepts[5].level | 1 |
| concepts[5].score | 0.34333014488220215 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q194118 |
| concepts[5].display_name | Agricultural engineering |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.33191102743148804 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3270689845085144 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.31026607751846313 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.21004509925842285 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C147176958 |
| concepts[10].level | 1 |
| concepts[10].score | 0.13269662857055664 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q77590 |
| concepts[10].display_name | Civil engineering |
| keywords[0].id | https://openalex.org/keywords/grading |
| keywords[0].score | 0.7081518173217773 |
| keywords[0].display_name | Grading (engineering) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.40248042345046997 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/environmental-science |
| keywords[2].score | 0.37641334533691406 |
| keywords[2].display_name | Environmental science |
| keywords[3].id | https://openalex.org/keywords/materials-science |
| keywords[3].score | 0.36224913597106934 |
| keywords[3].display_name | Materials science |
| keywords[4].id | https://openalex.org/keywords/statistics |
| keywords[4].score | 0.35983043909072876 |
| keywords[4].display_name | Statistics |
| keywords[5].id | https://openalex.org/keywords/agricultural-engineering |
| keywords[5].score | 0.34333014488220215 |
| keywords[5].display_name | Agricultural engineering |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.33191102743148804 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.3270689845085144 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.31026607751846313 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.21004509925842285 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/civil-engineering |
| keywords[10].score | 0.13269662857055664 |
| keywords[10].display_name | Civil engineering |
| language | en |
| locations[0].id | doi:10.6084/m9.figshare.19922141 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.6084/m9.figshare.19922141 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5026867963 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8770-9893 |
| authorships[0].author.display_name | Thainara Rebelo da Silva |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Thainara Rebelo da Silva |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5082464776 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0594-8514 |
| authorships[1].author.display_name | Anderson Gomide Costa |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Anderson Gomide Costa |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5055935505 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9301-0547 |
| authorships[2].author.display_name | Juliana Lobo Paes |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Juliana Lobo Paes |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5051401791 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3388-6050 |
| authorships[3].author.display_name | Marcus Vinícius Morais de Oliveira |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Marcus Vinícius Morais de Oliveira |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5113623482 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Francisco de Assis de Carvalho Pinto |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Francisco de Assis de Carvalho Pinto |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.6084/m9.figshare.19922141 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-04-08T00:00:00 |
| display_name | Comparing quality parameters obtained using destructive and optical methods in grading tomatoes |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T14365 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9761000275611877 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Leaf Properties and Growth Measurement |
| related_works | https://openalex.org/W2064165679, https://openalex.org/W1588461101, https://openalex.org/W3208525924, https://openalex.org/W2591833644, https://openalex.org/W2885058781, https://openalex.org/W3127248583, https://openalex.org/W1552490082, https://openalex.org/W4236439135, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.6084/m9.figshare.19922141 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.6084/m9.figshare.19922141 |
| primary_location.id | doi:10.6084/m9.figshare.19922141 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.6084/m9.figshare.19922141 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 82 |
| abstract_inverted_index.a | 72, 166, 174, 211 |
| abstract_inverted_index.an | 61, 74, 216 |
| abstract_inverted_index.as | 71, 137, 173 |
| abstract_inverted_index.by | 56, 79, 183 |
| abstract_inverted_index.in | 66, 89, 171, 201 |
| abstract_inverted_index.of | 22, 30, 63, 84, 106, 112, 148, 176, 219 |
| abstract_inverted_index.on | 165 |
| abstract_inverted_index.to | 11, 34, 103 |
| abstract_inverted_index.150 | 85 |
| abstract_inverted_index.The | 28, 146, 169, 188 |
| abstract_inverted_index.Two | 124 |
| abstract_inverted_index.aim | 29 |
| abstract_inverted_index.and | 19, 51, 120, 140, 159, 162, 215 |
| abstract_inverted_index.for | 3 |
| abstract_inverted_index.not | 15 |
| abstract_inverted_index.out | 78 |
| abstract_inverted_index.the | 17, 20, 24, 46, 90, 107, 110, 116, 130, 141, 149, 156, 177, 184, 193, 198, 203, 206 |
| abstract_inverted_index.two | 150 |
| abstract_inverted_index.was | 33, 101, 153, 163, 181 |
| abstract_inverted_index.best | 199 |
| abstract_inverted_index.data | 113 |
| abstract_inverted_index.from | 40, 52, 192 |
| abstract_inverted_index.have | 7 |
| abstract_inverted_index.into | 93, 205 |
| abstract_inverted_index.ripe | 68 |
| abstract_inverted_index.this | 31 |
| abstract_inverted_index.used | 88, 102 |
| abstract_inverted_index.were | 87, 128 |
| abstract_inverted_index.with | 210 |
| abstract_inverted_index.Kappa | 157, 213 |
| abstract_inverted_index.based | 164 |
| abstract_inverted_index.first | 131, 185 |
| abstract_inverted_index.fruit | 5 |
| abstract_inverted_index.index | 158, 214 |
| abstract_inverted_index.input | 138 |
| abstract_inverted_index.laser | 48, 118 |
| abstract_inverted_index.study | 32 |
| abstract_inverted_index.their | 64 |
| abstract_inverted_index.three | 94, 207 |
| abstract_inverted_index.total | 83 |
| abstract_inverted_index.using | 45, 70, 115, 133, 143, 155 |
| abstract_inverted_index.67.5%. | 220 |
| abstract_inverted_index.groups | 111 |
| abstract_inverted_index.neural | 37, 126, 151, 189 |
| abstract_inverted_index.sample | 18 |
| abstract_inverted_index.second | 142 |
| abstract_inverted_index.showed | 197 |
| abstract_inverted_index.visual | 80 |
| abstract_inverted_index.within | 109 |
| abstract_inverted_index.Optical | 1 |
| abstract_inverted_index.carried | 77 |
| abstract_inverted_index.compare | 35 |
| abstract_inverted_index.control | 26 |
| abstract_inverted_index.divided | 92 |
| abstract_inverted_index.earlier | 75 |
| abstract_inverted_index.indices | 43, 136, 180, 196 |
| abstract_inverted_index.methods | 2 |
| abstract_inverted_index.network | 190 |
| abstract_inverted_index.optical | 49 |
| abstract_inverted_index.overall | 160, 217 |
| abstract_inverted_index.quality | 6, 25 |
| abstract_inverted_index.stages, | 209 |
| abstract_inverted_index.stages. | 96 |
| abstract_inverted_index.through | 60 |
| abstract_inverted_index.various | 8 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.accuracy | 218 |
| abstract_inverted_index.activity | 42, 135, 179, 195 |
| abstract_inverted_index.analysis | 100 |
| abstract_inverted_index.compared | 10, 154 |
| abstract_inverted_index.evaluate | 104 |
| abstract_inverted_index.function | 175 |
| abstract_inverted_index.methods, | 13 |
| abstract_inverted_index.methods. | 123 |
| abstract_inverted_index.networks | 38, 127, 152 |
| abstract_inverted_index.obtained | 44, 55, 114 |
| abstract_inverted_index.process. | 27 |
| abstract_inverted_index.ripening | 95, 172, 208 |
| abstract_inverted_index.tomatoes | 86, 204 |
| abstract_inverted_index.variance | 108 |
| abstract_inverted_index.vectors, | 139 |
| abstract_inverted_index.accuracy, | 161 |
| abstract_inverted_index.analysing | 4 |
| abstract_inverted_index.component | 99 |
| abstract_inverted_index.developed | 39 |
| abstract_inverted_index.explained | 182 |
| abstract_inverted_index.generated | 132, 191 |
| abstract_inverted_index.including | 14 |
| abstract_inverted_index.precision | 65, 147 |
| abstract_inverted_index.principal | 98, 186 |
| abstract_inverted_index.reference | 73, 167 |
| abstract_inverted_index.technique | 119 |
| abstract_inverted_index.tomatoes, | 69 |
| abstract_inverted_index.variables | 54 |
| abstract_inverted_index.variation | 170 |
| abstract_inverted_index.advantages | 9 |
| abstract_inverted_index.artificial | 36, 125 |
| abstract_inverted_index.automating | 23 |
| abstract_inverted_index.biological | 41, 134, 178, 194 |
| abstract_inverted_index.biospeckle | 47, 117 |
| abstract_inverted_index.component. | 187 |
| abstract_inverted_index.destroying | 16 |
| abstract_inverted_index.developed, | 129 |
| abstract_inverted_index.evaluation | 62 |
| abstract_inverted_index.laboratory | 122 |
| abstract_inverted_index.technique, | 50 |
| abstract_inverted_index.variables. | 145 |
| abstract_inverted_index.classifying | 67, 202 |
| abstract_inverted_index.destructive | 58, 121 |
| abstract_inverted_index.experiment, | 91 |
| abstract_inverted_index.inspection. | 81 |
| abstract_inverted_index.interaction | 105 |
| abstract_inverted_index.performance | 200 |
| abstract_inverted_index.possibility | 21 |
| abstract_inverted_index.significant | 212 |
| abstract_inverted_index.techniques, | 59 |
| abstract_inverted_index.Multivariate | 97 |
| abstract_inverted_index.conventional | 12, 57 |
| abstract_inverted_index.classification | 76 |
| abstract_inverted_index.classification. | 168 |
| abstract_inverted_index.physico-chemical | 53, 144 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |