Comparison between Deep Learning and Tree-Based Machine Learning Approaches for Landslide Susceptibility Mapping Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/w13192664
The efficiency of deep learning and tree-based machine learning approaches has gained immense popularity in various fields. One deep learning model viz. convolution neural network (CNN), artificial neural network (ANN) and four tree-based machine learning models, namely, alternative decision tree (ADTree), classification and regression tree (CART), functional tree and logistic model tree (LMT), were used for landslide susceptibility mapping in the East Sikkim Himalaya region of India, and the results were compared. Landslide areas were delimited and mapped as landslide inventory (LIM) after gathering information from historical records and periodic field investigations. In LIM, 91 landslides were plotted and classified into training (64 landslides) and testing (27 landslides) subsets randomly to train and validate the models. A total of 21 landslides conditioning factors (LCFs) were considered as model inputs, and the results of each model were categorised under five susceptibility classes. The receiver operating characteristics curve and 21 statistical measures were used to evaluate and prioritise the models. The CNN deep learning model achieved the priority rank 1 with area under the curve of 0.918 and 0.933 by using the training and testing data, quantifying 23.02% and 14.40% area as very high and highly susceptible followed by ANN, ADtree, CART, FTree and LMT models. This research might be useful in landslide studies, especially in locations with comparable geophysical and climatological characteristics, to aid in decision making for land use planning.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/w13192664
- https://www.mdpi.com/2073-4441/13/19/2664/pdf?version=1632823453
- OA Status
- gold
- Cited By
- 41
- References
- 90
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3204564844
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3204564844Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/w13192664Digital Object Identifier
- Title
-
Comparison between Deep Learning and Tree-Based Machine Learning Approaches for Landslide Susceptibility MappingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-09-27Full publication date if available
- Authors
-
Sunil Saha, Jagabandhu Roy, Tusar Kanti Hembram, Biswajeet Pradhan, Abhirup Dikshit, Khairul Nizam Abdul Maulud, Abdullah AlamriList of authors in order
- Landing page
-
https://doi.org/10.3390/w13192664Publisher landing page
- PDF URL
-
https://www.mdpi.com/2073-4441/13/19/2664/pdf?version=1632823453Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2073-4441/13/19/2664/pdf?version=1632823453Direct OA link when available
- Concepts
-
Landslide, Artificial intelligence, Decision tree, Deep learning, Computer science, Artificial neural network, Machine learning, Tree (set theory), Decision tree model, Logistic regression, Data mining, Geology, Mathematics, Geotechnical engineering, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
41Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 17, 2024: 9, 2023: 10, 2022: 5Per-year citation counts (last 5 years)
- References (count)
-
90Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3204564844 |
|---|---|
| doi | https://doi.org/10.3390/w13192664 |
| ids.doi | https://doi.org/10.3390/w13192664 |
| ids.mag | 3204564844 |
| ids.openalex | https://openalex.org/W3204564844 |
| fwci | 8.80111956 |
| type | article |
| title | Comparison between Deep Learning and Tree-Based Machine Learning Approaches for Landslide Susceptibility Mapping |
| awards[0].id | https://openalex.org/G3964765030 |
| awards[0].funder_id | https://openalex.org/F4320336885 |
| awards[0].display_name | |
| awards[0].funder_award_id | 3. Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS) |
| awards[0].funder_display_name | Centre for Advanced Modelling and Geospatial lnformation Systems, University of Technology Sydney |
| awards[1].id | https://openalex.org/G5061529679 |
| awards[1].funder_id | https://openalex.org/F4320321145 |
| awards[1].display_name | |
| awards[1].funder_award_id | Researchers Supporting Project number RSP-2021/14 |
| awards[1].funder_display_name | King Saud University |
| awards[2].id | https://openalex.org/G2411107608 |
| awards[2].funder_id | https://openalex.org/F4320322699 |
| awards[2].display_name | |
| awards[2].funder_award_id | DANA IMPAK PERDANA with grant no: DIP-2018-030 |
| awards[2].funder_display_name | Universiti Kebangsaan Malaysia |
| biblio.issue | 19 |
| biblio.volume | 13 |
| biblio.last_page | 2664 |
| biblio.first_page | 2664 |
| topics[0].id | https://openalex.org/T10535 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2308 |
| topics[0].subfield.display_name | Management, Monitoring, Policy and Law |
| topics[0].display_name | Landslides and related hazards |
| topics[1].id | https://openalex.org/T12047 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9828000068664551 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2725 |
| topics[1].subfield.display_name | Infectious Diseases |
| topics[1].display_name | Viral Infections and Vectors |
| topics[2].id | https://openalex.org/T10930 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9394000172615051 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2306 |
| topics[2].subfield.display_name | Global and Planetary Change |
| topics[2].display_name | Flood Risk Assessment and Management |
| funders[0].id | https://openalex.org/F4320321145 |
| funders[0].ror | https://ror.org/02f81g417 |
| funders[0].display_name | King Saud University |
| funders[1].id | https://openalex.org/F4320322699 |
| funders[1].ror | https://ror.org/00bw8d226 |
| funders[1].display_name | Universiti Kebangsaan Malaysia |
| funders[2].id | https://openalex.org/F4320336885 |
| funders[2].ror | |
| funders[2].display_name | Centre for Advanced Modelling and Geospatial lnformation Systems, University of Technology Sydney |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2382 |
| apc_paid.value | 2200 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2382 |
| concepts[0].id | https://openalex.org/C186295008 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8738455772399902 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q167903 |
| concepts[0].display_name | Landslide |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6551992297172546 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C84525736 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6151108741760254 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q831366 |
| concepts[2].display_name | Decision tree |
| concepts[3].id | https://openalex.org/C108583219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6085261106491089 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep learning |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5879424214363098 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5828133821487427 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5647748708724976 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C113174947 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5340133309364319 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2859736 |
| concepts[7].display_name | Tree (set theory) |
| concepts[8].id | https://openalex.org/C56289965 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4503612816333771 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5249246 |
| concepts[8].display_name | Decision tree model |
| concepts[9].id | https://openalex.org/C151956035 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4275505244731903 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1132755 |
| concepts[9].display_name | Logistic regression |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3547951579093933 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C127313418 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2284434735774994 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[11].display_name | Geology |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.1551174521446228 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C187320778 |
| concepts[13].level | 1 |
| concepts[13].score | 0.07063454389572144 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1349130 |
| concepts[13].display_name | Geotechnical engineering |
| concepts[14].id | https://openalex.org/C134306372 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[14].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/landslide |
| keywords[0].score | 0.8738455772399902 |
| keywords[0].display_name | Landslide |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6551992297172546 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/decision-tree |
| keywords[2].score | 0.6151108741760254 |
| keywords[2].display_name | Decision tree |
| keywords[3].id | https://openalex.org/keywords/deep-learning |
| keywords[3].score | 0.6085261106491089 |
| keywords[3].display_name | Deep learning |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5879424214363098 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.5828133821487427 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.5647748708724976 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/tree |
| keywords[7].score | 0.5340133309364319 |
| keywords[7].display_name | Tree (set theory) |
| keywords[8].id | https://openalex.org/keywords/decision-tree-model |
| keywords[8].score | 0.4503612816333771 |
| keywords[8].display_name | Decision tree model |
| keywords[9].id | https://openalex.org/keywords/logistic-regression |
| keywords[9].score | 0.4275505244731903 |
| keywords[9].display_name | Logistic regression |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.3547951579093933 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/geology |
| keywords[11].score | 0.2284434735774994 |
| keywords[11].display_name | Geology |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.1551174521446228 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/geotechnical-engineering |
| keywords[13].score | 0.07063454389572144 |
| keywords[13].display_name | Geotechnical engineering |
| language | en |
| locations[0].id | doi:10.3390/w13192664 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S134216166 |
| locations[0].source.issn | 2073-4441 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2073-4441 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Water |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2073-4441/13/19/2664/pdf?version=1632823453 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Water |
| locations[0].landing_page_url | https://doi.org/10.3390/w13192664 |
| locations[1].id | pmh:oai:doaj.org/article:b75c64b3494c4d24a649502c244f37d7 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Water, Vol 13, Iss 19, p 2664 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/b75c64b3494c4d24a649502c244f37d7 |
| locations[2].id | pmh:oai:mdpi.com:/2073-4441/13/19/2664/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Water; Volume 13; Issue 19; Pages: 2664 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/w13192664 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5030817787 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2739-3716 |
| authorships[0].author.display_name | Sunil Saha |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I33932797 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Geography, University of Gour Banga, Malda 732103, India |
| authorships[0].institutions[0].id | https://openalex.org/I33932797 |
| authorships[0].institutions[0].ror | https://ror.org/00pyh2y32 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I33932797 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | University of Gour Banga |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sunil Saha |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Geography, University of Gour Banga, Malda 732103, India |
| authorships[1].author.id | https://openalex.org/A5110670728 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jagabandhu Roy |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I33932797 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Geography, University of Gour Banga, Malda 732103, India |
| authorships[1].institutions[0].id | https://openalex.org/I33932797 |
| authorships[1].institutions[0].ror | https://ror.org/00pyh2y32 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I33932797 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | University of Gour Banga |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jagabandhu Roy |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Geography, University of Gour Banga, Malda 732103, India |
| authorships[2].author.id | https://openalex.org/A5067911117 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7718-722X |
| authorships[2].author.display_name | Tusar Kanti Hembram |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Geography, Nistarini College, Purulia 723101, India |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tusar Kanti Hembram |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Geography, Nistarini College, Purulia 723101, India |
| authorships[3].author.id | https://openalex.org/A5059040421 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9863-2054 |
| authorships[3].author.display_name | Biswajeet Pradhan |
| authorships[3].countries | AU, MY |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I885383172 |
| authorships[3].affiliations[0].raw_affiliation_string | Earth Observation Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I114017466 |
| authorships[3].affiliations[1].raw_affiliation_string | Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney 2007, Australia |
| authorships[3].institutions[0].id | https://openalex.org/I114017466 |
| authorships[3].institutions[0].ror | https://ror.org/03f0f6041 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I114017466 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | University of Technology Sydney |
| authorships[3].institutions[1].id | https://openalex.org/I885383172 |
| authorships[3].institutions[1].ror | https://ror.org/00bw8d226 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I885383172 |
| authorships[3].institutions[1].country_code | MY |
| authorships[3].institutions[1].display_name | National University of Malaysia |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Biswajeet Pradhan |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney 2007, Australia, Earth Observation Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia |
| authorships[4].author.id | https://openalex.org/A5058731208 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2876-4080 |
| authorships[4].author.display_name | Abhirup Dikshit |
| authorships[4].countries | AU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I114017466 |
| authorships[4].affiliations[0].raw_affiliation_string | Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney 2007, Australia |
| authorships[4].institutions[0].id | https://openalex.org/I114017466 |
| authorships[4].institutions[0].ror | https://ror.org/03f0f6041 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I114017466 |
| authorships[4].institutions[0].country_code | AU |
| authorships[4].institutions[0].display_name | University of Technology Sydney |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Abhirup Dikshit |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney 2007, Australia |
| authorships[5].author.id | https://openalex.org/A5028417716 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9215-2778 |
| authorships[5].author.display_name | Khairul Nizam Abdul Maulud |
| authorships[5].countries | MY |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I885383172 |
| authorships[5].affiliations[0].raw_affiliation_string | Earth Observation Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I885383172 |
| authorships[5].affiliations[1].raw_affiliation_string | Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia |
| authorships[5].institutions[0].id | https://openalex.org/I885383172 |
| authorships[5].institutions[0].ror | https://ror.org/00bw8d226 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I885383172 |
| authorships[5].institutions[0].country_code | MY |
| authorships[5].institutions[0].display_name | National University of Malaysia |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Khairul Nizam Abdul Maulud |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia, Earth Observation Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia |
| authorships[6].author.id | https://openalex.org/A5029739578 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-3045-1350 |
| authorships[6].author.display_name | Abdullah Alamri |
| authorships[6].countries | SA |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I28022161 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Geology & Geophysics, College of Science, King Saud University, P.O. Box 2455, Riyadh 145111, Saudi Arabia |
| authorships[6].institutions[0].id | https://openalex.org/I28022161 |
| authorships[6].institutions[0].ror | https://ror.org/02f81g417 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I28022161 |
| authorships[6].institutions[0].country_code | SA |
| authorships[6].institutions[0].display_name | King Saud University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Abdullah M. Alamri |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Geology & Geophysics, College of Science, King Saud University, P.O. Box 2455, Riyadh 145111, Saudi Arabia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2073-4441/13/19/2664/pdf?version=1632823453 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-10-11T00:00:00 |
| display_name | Comparison between Deep Learning and Tree-Based Machine Learning Approaches for Landslide Susceptibility Mapping |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10535 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2308 |
| primary_topic.subfield.display_name | Management, Monitoring, Policy and Law |
| primary_topic.display_name | Landslides and related hazards |
| related_works | https://openalex.org/W4380629648, https://openalex.org/W3214885503, https://openalex.org/W3034735823, https://openalex.org/W4385640509, https://openalex.org/W4313906440, https://openalex.org/W2389814391, https://openalex.org/W3004292714, https://openalex.org/W3200192427, https://openalex.org/W4381745612, https://openalex.org/W2087668131 |
| cited_by_count | 41 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 17 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 9 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 10 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/w13192664 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S134216166 |
| best_oa_location.source.issn | 2073-4441 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2073-4441 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Water |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2073-4441/13/19/2664/pdf?version=1632823453 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Water |
| best_oa_location.landing_page_url | https://doi.org/10.3390/w13192664 |
| primary_location.id | doi:10.3390/w13192664 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S134216166 |
| primary_location.source.issn | 2073-4441 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2073-4441 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Water |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2073-4441/13/19/2664/pdf?version=1632823453 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Water |
| primary_location.landing_page_url | https://doi.org/10.3390/w13192664 |
| publication_date | 2021-09-27 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2793831793, https://openalex.org/W2905135694, https://openalex.org/W2792546905, https://openalex.org/W3087676330, https://openalex.org/W2089306241, https://openalex.org/W6673250033, https://openalex.org/W2994899005, https://openalex.org/W2018459837, https://openalex.org/W2584860397, https://openalex.org/W2061759157, https://openalex.org/W2193898033, https://openalex.org/W1998716270, https://openalex.org/W2030333538, https://openalex.org/W2914116648, https://openalex.org/W2063987149, https://openalex.org/W3032913569, https://openalex.org/W2968923792, https://openalex.org/W2919115771, https://openalex.org/W3134633772, https://openalex.org/W3170060749, https://openalex.org/W3109662912, https://openalex.org/W3164636606, https://openalex.org/W3005741980, https://openalex.org/W1986382962, https://openalex.org/W2135194391, https://openalex.org/W2076063813, https://openalex.org/W2618530766, https://openalex.org/W4205947740, https://openalex.org/W2999729702, https://openalex.org/W3009636339, https://openalex.org/W3172257183, https://openalex.org/W1981173169, https://openalex.org/W2979371817, https://openalex.org/W3164813077, https://openalex.org/W1984836501, https://openalex.org/W3032464364, https://openalex.org/W2999015335, https://openalex.org/W3001604145, https://openalex.org/W1996402033, https://openalex.org/W2021520845, https://openalex.org/W1521511546, https://openalex.org/W2921124223, https://openalex.org/W2598490389, https://openalex.org/W6602973286, https://openalex.org/W2014725748, https://openalex.org/W4246883244, https://openalex.org/W3023192521, https://openalex.org/W2578756457, https://openalex.org/W1665214252, https://openalex.org/W6634326339, https://openalex.org/W1977177161, https://openalex.org/W2891027816, https://openalex.org/W6639409548, https://openalex.org/W2079109804, https://openalex.org/W1978784463, https://openalex.org/W2912391306, https://openalex.org/W1981039744, https://openalex.org/W2171612326, https://openalex.org/W4299689471, https://openalex.org/W2158698691, https://openalex.org/W2024532146, https://openalex.org/W2912893284, https://openalex.org/W2061046949, https://openalex.org/W3005376489, https://openalex.org/W2994312904, https://openalex.org/W2915483120, https://openalex.org/W2059435031, https://openalex.org/W2912361013, https://openalex.org/W2973710071, https://openalex.org/W2905155550, https://openalex.org/W2327779371, https://openalex.org/W2965059688, https://openalex.org/W6775047284, https://openalex.org/W2888559749, https://openalex.org/W2783350994, https://openalex.org/W3056808037, https://openalex.org/W3022145812, https://openalex.org/W3093548899, https://openalex.org/W2908831454, https://openalex.org/W2519746072, https://openalex.org/W3034020184, https://openalex.org/W1967335776, https://openalex.org/W3011400958, https://openalex.org/W3045700597, https://openalex.org/W72904796, https://openalex.org/W1881647329, https://openalex.org/W2913323966, https://openalex.org/W2073350698, https://openalex.org/W2090091295, https://openalex.org/W1795050996 |
| referenced_works_count | 90 |
| abstract_inverted_index.1 | 167 |
| abstract_inverted_index.A | 116 |
| abstract_inverted_index.21 | 119, 147 |
| abstract_inverted_index.91 | 94 |
| abstract_inverted_index.In | 92 |
| abstract_inverted_index.as | 78, 126, 189 |
| abstract_inverted_index.be | 207 |
| abstract_inverted_index.by | 177, 196 |
| abstract_inverted_index.in | 14, 59, 209, 213, 223 |
| abstract_inverted_index.of | 2, 65, 118, 132, 173 |
| abstract_inverted_index.to | 110, 152, 221 |
| abstract_inverted_index.(27 | 106 |
| abstract_inverted_index.(64 | 102 |
| abstract_inverted_index.CNN | 159 |
| abstract_inverted_index.LMT | 202 |
| abstract_inverted_index.One | 17 |
| abstract_inverted_index.The | 0, 141, 158 |
| abstract_inverted_index.aid | 222 |
| abstract_inverted_index.and | 5, 30, 42, 48, 67, 76, 88, 98, 104, 112, 129, 146, 154, 175, 181, 186, 192, 201, 218 |
| abstract_inverted_index.for | 55, 226 |
| abstract_inverted_index.has | 10 |
| abstract_inverted_index.the | 60, 68, 114, 130, 156, 164, 171, 179 |
| abstract_inverted_index.use | 228 |
| abstract_inverted_index.ANN, | 197 |
| abstract_inverted_index.East | 61 |
| abstract_inverted_index.LIM, | 93 |
| abstract_inverted_index.This | 204 |
| abstract_inverted_index.area | 169, 188 |
| abstract_inverted_index.deep | 3, 18, 160 |
| abstract_inverted_index.each | 133 |
| abstract_inverted_index.five | 138 |
| abstract_inverted_index.four | 31 |
| abstract_inverted_index.from | 85 |
| abstract_inverted_index.high | 191 |
| abstract_inverted_index.into | 100 |
| abstract_inverted_index.land | 227 |
| abstract_inverted_index.rank | 166 |
| abstract_inverted_index.tree | 39, 44, 47, 51 |
| abstract_inverted_index.used | 54, 151 |
| abstract_inverted_index.very | 190 |
| abstract_inverted_index.viz. | 21 |
| abstract_inverted_index.were | 53, 70, 74, 96, 124, 135, 150 |
| abstract_inverted_index.with | 168, 215 |
| abstract_inverted_index.(ANN) | 29 |
| abstract_inverted_index.(LIM) | 81 |
| abstract_inverted_index.0.918 | 174 |
| abstract_inverted_index.0.933 | 176 |
| abstract_inverted_index.CART, | 199 |
| abstract_inverted_index.FTree | 200 |
| abstract_inverted_index.after | 82 |
| abstract_inverted_index.areas | 73 |
| abstract_inverted_index.curve | 145, 172 |
| abstract_inverted_index.data, | 183 |
| abstract_inverted_index.field | 90 |
| abstract_inverted_index.might | 206 |
| abstract_inverted_index.model | 20, 50, 127, 134, 162 |
| abstract_inverted_index.total | 117 |
| abstract_inverted_index.train | 111 |
| abstract_inverted_index.under | 137, 170 |
| abstract_inverted_index.using | 178 |
| abstract_inverted_index.(CNN), | 25 |
| abstract_inverted_index.(LCFs) | 123 |
| abstract_inverted_index.(LMT), | 52 |
| abstract_inverted_index.14.40% | 187 |
| abstract_inverted_index.23.02% | 185 |
| abstract_inverted_index.India, | 66 |
| abstract_inverted_index.Sikkim | 62 |
| abstract_inverted_index.gained | 11 |
| abstract_inverted_index.highly | 193 |
| abstract_inverted_index.making | 225 |
| abstract_inverted_index.mapped | 77 |
| abstract_inverted_index.neural | 23, 27 |
| abstract_inverted_index.region | 64 |
| abstract_inverted_index.useful | 208 |
| abstract_inverted_index.(CART), | 45 |
| abstract_inverted_index.ADtree, | 198 |
| abstract_inverted_index.factors | 122 |
| abstract_inverted_index.fields. | 16 |
| abstract_inverted_index.immense | 12 |
| abstract_inverted_index.inputs, | 128 |
| abstract_inverted_index.machine | 7, 33 |
| abstract_inverted_index.mapping | 58 |
| abstract_inverted_index.models, | 35 |
| abstract_inverted_index.models. | 115, 157, 203 |
| abstract_inverted_index.namely, | 36 |
| abstract_inverted_index.network | 24, 28 |
| abstract_inverted_index.plotted | 97 |
| abstract_inverted_index.records | 87 |
| abstract_inverted_index.results | 69, 131 |
| abstract_inverted_index.subsets | 108 |
| abstract_inverted_index.testing | 105, 182 |
| abstract_inverted_index.various | 15 |
| abstract_inverted_index.Himalaya | 63 |
| abstract_inverted_index.achieved | 163 |
| abstract_inverted_index.classes. | 140 |
| abstract_inverted_index.decision | 38, 224 |
| abstract_inverted_index.evaluate | 153 |
| abstract_inverted_index.followed | 195 |
| abstract_inverted_index.learning | 4, 8, 19, 34, 161 |
| abstract_inverted_index.logistic | 49 |
| abstract_inverted_index.measures | 149 |
| abstract_inverted_index.periodic | 89 |
| abstract_inverted_index.priority | 165 |
| abstract_inverted_index.randomly | 109 |
| abstract_inverted_index.receiver | 142 |
| abstract_inverted_index.research | 205 |
| abstract_inverted_index.studies, | 211 |
| abstract_inverted_index.training | 101, 180 |
| abstract_inverted_index.validate | 113 |
| abstract_inverted_index.(ADTree), | 40 |
| abstract_inverted_index.Landslide | 72 |
| abstract_inverted_index.compared. | 71 |
| abstract_inverted_index.delimited | 75 |
| abstract_inverted_index.gathering | 83 |
| abstract_inverted_index.inventory | 80 |
| abstract_inverted_index.landslide | 56, 79, 210 |
| abstract_inverted_index.locations | 214 |
| abstract_inverted_index.operating | 143 |
| abstract_inverted_index.planning. | 229 |
| abstract_inverted_index.approaches | 9 |
| abstract_inverted_index.artificial | 26 |
| abstract_inverted_index.classified | 99 |
| abstract_inverted_index.comparable | 216 |
| abstract_inverted_index.considered | 125 |
| abstract_inverted_index.efficiency | 1 |
| abstract_inverted_index.especially | 212 |
| abstract_inverted_index.functional | 46 |
| abstract_inverted_index.historical | 86 |
| abstract_inverted_index.landslides | 95, 120 |
| abstract_inverted_index.popularity | 13 |
| abstract_inverted_index.prioritise | 155 |
| abstract_inverted_index.regression | 43 |
| abstract_inverted_index.tree-based | 6, 32 |
| abstract_inverted_index.alternative | 37 |
| abstract_inverted_index.categorised | 136 |
| abstract_inverted_index.convolution | 22 |
| abstract_inverted_index.geophysical | 217 |
| abstract_inverted_index.information | 84 |
| abstract_inverted_index.landslides) | 103, 107 |
| abstract_inverted_index.quantifying | 184 |
| abstract_inverted_index.statistical | 148 |
| abstract_inverted_index.susceptible | 194 |
| abstract_inverted_index.conditioning | 121 |
| abstract_inverted_index.classification | 41 |
| abstract_inverted_index.climatological | 219 |
| abstract_inverted_index.susceptibility | 57, 139 |
| abstract_inverted_index.characteristics | 144 |
| abstract_inverted_index.investigations. | 91 |
| abstract_inverted_index.characteristics, | 220 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5059040421 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I114017466, https://openalex.org/I885383172 |
| citation_normalized_percentile.value | 0.97161624 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |