Comparison-embedded evidence-CNN model for fuzzy assessment of wear severity using multi-dimensional surface images Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1007/s40544-023-0752-8
Wear topography is a significant indicator of tribological behavior for the inspection of machine health conditions. An intelligent in-suit wear assessment method for random topography is here proposed. Three-dimension (3D) topography is employed to address the uncertainties in wear evaluation. Initially, 3D topography reconstruction from a worn surface is accomplished with photometric stereo vision (PSV). Then, the wear features are identified by a contrastive learning-based extraction network (WSFE-Net) including the relative and temporal prior knowledge of wear mechanisms. Furthermore, the typical wear degrees including mild, moderate, and severe are evaluated by a wear severity assessment network (WSA-Net) for the probability and its associated uncertainty based on subjective logic. By integrating the evidence information from 2D and 3D-damage surfaces with Dempster–Shafer (D–S) evidence, the uncertainty of severity assessment results is further reduced. The proposed model could constrain the uncertainty below 0.066 in the wear degree evaluation of a continuous wear experiment, which reflects the high credibility of the evaluation result.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s40544-023-0752-8
- https://link.springer.com/content/pdf/10.1007/s40544-023-0752-8.pdf
- OA Status
- diamond
- Cited By
- 5
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389227397
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389227397Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s40544-023-0752-8Digital Object Identifier
- Title
-
Comparison-embedded evidence-CNN model for fuzzy assessment of wear severity using multi-dimensional surface imagesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-01Full publication date if available
- Authors
-
Tao Shao, Shuo Wang, Qinghua Wang, Tonghai Wu, Zhifu HuangList of authors in order
- Landing page
-
https://doi.org/10.1007/s40544-023-0752-8Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s40544-023-0752-8.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s40544-023-0752-8.pdfDirect OA link when available
- Concepts
-
Artificial intelligence, Fuzzy logic, Computer science, Credibility, Measurement uncertainty, Surface (topology), Machine learning, Mathematics, Statistics, Geometry, Political science, LawTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389227397 |
|---|---|
| doi | https://doi.org/10.1007/s40544-023-0752-8 |
| ids.doi | https://doi.org/10.1007/s40544-023-0752-8 |
| ids.openalex | https://openalex.org/W4389227397 |
| fwci | 0.9225556 |
| type | article |
| title | Comparison-embedded evidence-CNN model for fuzzy assessment of wear severity using multi-dimensional surface images |
| biblio.issue | 6 |
| biblio.volume | 12 |
| biblio.last_page | 1118 |
| biblio.first_page | 1098 |
| topics[0].id | https://openalex.org/T11557 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.992900013923645 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2210 |
| topics[0].subfield.display_name | Mechanical Engineering |
| topics[0].display_name | Lubricants and Their Additives |
| topics[1].id | https://openalex.org/T11062 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9822999835014343 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Gear and Bearing Dynamics Analysis |
| topics[2].id | https://openalex.org/T12252 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9337999820709229 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2211 |
| topics[2].subfield.display_name | Mechanics of Materials |
| topics[2].display_name | Mechanical stress and fatigue analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.5772970914840698 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C58166 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5698024034500122 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q224821 |
| concepts[1].display_name | Fuzzy logic |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5105746984481812 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2780224610 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4568929672241211 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1530061 |
| concepts[3].display_name | Credibility |
| concepts[4].id | https://openalex.org/C137209882 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4353184103965759 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1403517 |
| concepts[4].display_name | Measurement uncertainty |
| concepts[5].id | https://openalex.org/C2776799497 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4146724343299866 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q484298 |
| concepts[5].display_name | Surface (topology) |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.321109414100647 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.19094255566596985 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.14806246757507324 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C2524010 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[9].display_name | Geometry |
| concepts[10].id | https://openalex.org/C17744445 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[10].display_name | Political science |
| concepts[11].id | https://openalex.org/C199539241 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[11].display_name | Law |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.5772970914840698 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/fuzzy-logic |
| keywords[1].score | 0.5698024034500122 |
| keywords[1].display_name | Fuzzy logic |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5105746984481812 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/credibility |
| keywords[3].score | 0.4568929672241211 |
| keywords[3].display_name | Credibility |
| keywords[4].id | https://openalex.org/keywords/measurement-uncertainty |
| keywords[4].score | 0.4353184103965759 |
| keywords[4].display_name | Measurement uncertainty |
| keywords[5].id | https://openalex.org/keywords/surface |
| keywords[5].score | 0.4146724343299866 |
| keywords[5].display_name | Surface (topology) |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.321109414100647 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.19094255566596985 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.14806246757507324 |
| keywords[8].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1007/s40544-023-0752-8 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2736340094 |
| locations[0].source.issn | 2223-7690, 2223-7704 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2223-7690 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Friction |
| locations[0].source.host_organization | https://openalex.org/P4310319965 |
| locations[0].source.host_organization_name | Springer Nature |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s40544-023-0752-8.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Friction |
| locations[0].landing_page_url | https://doi.org/10.1007/s40544-023-0752-8 |
| locations[1].id | pmh:oai:doaj.org/article:317c888a899e47ccabae359ad715eb23 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Friction, Vol 12, Iss 6, Pp 1098-1118 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/317c888a899e47ccabae359ad715eb23 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5075478312 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5738-1241 |
| authorships[0].author.display_name | Tao Shao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I87445476 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Xi'an, 710049, China |
| authorships[0].institutions[0].id | https://openalex.org/I87445476 |
| authorships[0].institutions[0].ror | https://ror.org/017zhmm22 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I87445476 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xi'an Jiaotong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tao Shao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Xi'an, 710049, China |
| authorships[1].author.id | https://openalex.org/A5100400197 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3123-3942 |
| authorships[1].author.display_name | Shuo Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I87445476 |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Xi'an, 710049, China |
| authorships[1].institutions[0].id | https://openalex.org/I87445476 |
| authorships[1].institutions[0].ror | https://ror.org/017zhmm22 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I87445476 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xi'an Jiaotong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shuo Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Xi'an, 710049, China |
| authorships[2].author.id | https://openalex.org/A5100432296 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8210-8220 |
| authorships[2].author.display_name | Qinghua Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I87445476 |
| authorships[2].affiliations[0].raw_affiliation_string | Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Xi'an, 710049, China |
| authorships[2].institutions[0].id | https://openalex.org/I87445476 |
| authorships[2].institutions[0].ror | https://ror.org/017zhmm22 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I87445476 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Xi'an Jiaotong University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qinghua Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Xi'an, 710049, China |
| authorships[3].author.id | https://openalex.org/A5084765072 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1277-7848 |
| authorships[3].author.display_name | Tonghai Wu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I87445476 |
| authorships[3].affiliations[0].raw_affiliation_string | Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Xi'an, 710049, China |
| authorships[3].institutions[0].id | https://openalex.org/I87445476 |
| authorships[3].institutions[0].ror | https://ror.org/017zhmm22 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I87445476 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Xi'an Jiaotong University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tonghai Wu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Xi'an, 710049, China |
| authorships[4].author.id | https://openalex.org/A5046672072 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8613-5189 |
| authorships[4].author.display_name | Zhifu Huang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I87445476 |
| authorships[4].affiliations[0].raw_affiliation_string | State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China |
| authorships[4].institutions[0].id | https://openalex.org/I87445476 |
| authorships[4].institutions[0].ror | https://ror.org/017zhmm22 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I87445476 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Xi'an Jiaotong University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Zhifu Huang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s40544-023-0752-8.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Comparison-embedded evidence-CNN model for fuzzy assessment of wear severity using multi-dimensional surface images |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11557 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.992900013923645 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2210 |
| primary_topic.subfield.display_name | Mechanical Engineering |
| primary_topic.display_name | Lubricants and Their Additives |
| related_works | https://openalex.org/W2388687352, https://openalex.org/W2370187191, https://openalex.org/W1990162851, https://openalex.org/W2369854048, https://openalex.org/W2374291020, https://openalex.org/W2355907197, https://openalex.org/W3171042291, https://openalex.org/W2390961115, https://openalex.org/W2388138913, https://openalex.org/W2385288613 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1007/s40544-023-0752-8 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2736340094 |
| best_oa_location.source.issn | 2223-7690, 2223-7704 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2223-7690 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Friction |
| best_oa_location.source.host_organization | https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_name | Springer Nature |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s40544-023-0752-8.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Friction |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s40544-023-0752-8 |
| primary_location.id | doi:10.1007/s40544-023-0752-8 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2736340094 |
| primary_location.source.issn | 2223-7690, 2223-7704 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2223-7690 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Friction |
| primary_location.source.host_organization | https://openalex.org/P4310319965 |
| primary_location.source.host_organization_name | Springer Nature |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s40544-023-0752-8.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Friction |
| primary_location.landing_page_url | https://doi.org/10.1007/s40544-023-0752-8 |
| publication_date | 2023-12-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2948164205, https://openalex.org/W2888205466, https://openalex.org/W4283784399, https://openalex.org/W3195497677, https://openalex.org/W4225265862, https://openalex.org/W2035912441, https://openalex.org/W3041485797, https://openalex.org/W2898930659, https://openalex.org/W3174106600, https://openalex.org/W3034922411, https://openalex.org/W3120655525, https://openalex.org/W3005590642, https://openalex.org/W4206260104, https://openalex.org/W3209637765, https://openalex.org/W3004904155, https://openalex.org/W2962414238, https://openalex.org/W3132322119, https://openalex.org/W3154138058, https://openalex.org/W2062639947, https://openalex.org/W2133531916, https://openalex.org/W2940116336, https://openalex.org/W2947827250, https://openalex.org/W2937549716, https://openalex.org/W2906256948, https://openalex.org/W2919115771, https://openalex.org/W2317595875, https://openalex.org/W3007823438, https://openalex.org/W2907348177, https://openalex.org/W4293635930, https://openalex.org/W2793668851, https://openalex.org/W4303968625, https://openalex.org/W2063499201, https://openalex.org/W3005806855, https://openalex.org/W2811513716 |
| referenced_works_count | 34 |
| abstract_inverted_index.a | 4, 46, 63, 92, 147 |
| abstract_inverted_index.2D | 115 |
| abstract_inverted_index.3D | 42 |
| abstract_inverted_index.An | 17 |
| abstract_inverted_index.By | 109 |
| abstract_inverted_index.by | 62, 91 |
| abstract_inverted_index.in | 38, 141 |
| abstract_inverted_index.is | 3, 26, 32, 49, 129 |
| abstract_inverted_index.of | 7, 13, 76, 125, 146, 156 |
| abstract_inverted_index.on | 106 |
| abstract_inverted_index.to | 34 |
| abstract_inverted_index.The | 132 |
| abstract_inverted_index.and | 72, 87, 101, 116 |
| abstract_inverted_index.are | 60, 89 |
| abstract_inverted_index.for | 10, 23, 98 |
| abstract_inverted_index.its | 102 |
| abstract_inverted_index.the | 11, 36, 57, 70, 80, 99, 111, 123, 137, 142, 153, 157 |
| abstract_inverted_index.(3D) | 30 |
| abstract_inverted_index.Wear | 1 |
| abstract_inverted_index.from | 45, 114 |
| abstract_inverted_index.here | 27 |
| abstract_inverted_index.high | 154 |
| abstract_inverted_index.wear | 20, 39, 58, 77, 82, 93, 143, 149 |
| abstract_inverted_index.with | 51, 119 |
| abstract_inverted_index.worn | 47 |
| abstract_inverted_index.0.066 | 140 |
| abstract_inverted_index.Then, | 56 |
| abstract_inverted_index.based | 105 |
| abstract_inverted_index.below | 139 |
| abstract_inverted_index.could | 135 |
| abstract_inverted_index.mild, | 85 |
| abstract_inverted_index.model | 134 |
| abstract_inverted_index.prior | 74 |
| abstract_inverted_index.which | 151 |
| abstract_inverted_index.(PSV). | 55 |
| abstract_inverted_index.degree | 144 |
| abstract_inverted_index.health | 15 |
| abstract_inverted_index.logic. | 108 |
| abstract_inverted_index.method | 22 |
| abstract_inverted_index.random | 24 |
| abstract_inverted_index.severe | 88 |
| abstract_inverted_index.stereo | 53 |
| abstract_inverted_index.vision | 54 |
| abstract_inverted_index.(D–S) | 121 |
| abstract_inverted_index.address | 35 |
| abstract_inverted_index.degrees | 83 |
| abstract_inverted_index.further | 130 |
| abstract_inverted_index.in-suit | 19 |
| abstract_inverted_index.machine | 14 |
| abstract_inverted_index.network | 67, 96 |
| abstract_inverted_index.result. | 159 |
| abstract_inverted_index.results | 128 |
| abstract_inverted_index.surface | 48 |
| abstract_inverted_index.typical | 81 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.behavior | 9 |
| abstract_inverted_index.employed | 33 |
| abstract_inverted_index.evidence | 112 |
| abstract_inverted_index.features | 59 |
| abstract_inverted_index.proposed | 133 |
| abstract_inverted_index.reduced. | 131 |
| abstract_inverted_index.reflects | 152 |
| abstract_inverted_index.relative | 71 |
| abstract_inverted_index.severity | 94, 126 |
| abstract_inverted_index.surfaces | 118 |
| abstract_inverted_index.temporal | 73 |
| abstract_inverted_index.(WSA-Net) | 97 |
| abstract_inverted_index.3D-damage | 117 |
| abstract_inverted_index.constrain | 136 |
| abstract_inverted_index.evaluated | 90 |
| abstract_inverted_index.evidence, | 122 |
| abstract_inverted_index.including | 69, 84 |
| abstract_inverted_index.indicator | 6 |
| abstract_inverted_index.knowledge | 75 |
| abstract_inverted_index.moderate, | 86 |
| abstract_inverted_index.proposed. | 28 |
| abstract_inverted_index.(WSFE-Net) | 68 |
| abstract_inverted_index.Initially, | 41 |
| abstract_inverted_index.assessment | 21, 95, 127 |
| abstract_inverted_index.associated | 103 |
| abstract_inverted_index.continuous | 148 |
| abstract_inverted_index.evaluation | 145, 158 |
| abstract_inverted_index.extraction | 66 |
| abstract_inverted_index.identified | 61 |
| abstract_inverted_index.inspection | 12 |
| abstract_inverted_index.subjective | 107 |
| abstract_inverted_index.topography | 2, 25, 31, 43 |
| abstract_inverted_index.conditions. | 16 |
| abstract_inverted_index.contrastive | 64 |
| abstract_inverted_index.credibility | 155 |
| abstract_inverted_index.evaluation. | 40 |
| abstract_inverted_index.experiment, | 150 |
| abstract_inverted_index.information | 113 |
| abstract_inverted_index.integrating | 110 |
| abstract_inverted_index.intelligent | 18 |
| abstract_inverted_index.mechanisms. | 78 |
| abstract_inverted_index.photometric | 52 |
| abstract_inverted_index.probability | 100 |
| abstract_inverted_index.significant | 5 |
| abstract_inverted_index.uncertainty | 104, 124, 138 |
| abstract_inverted_index.Furthermore, | 79 |
| abstract_inverted_index.accomplished | 50 |
| abstract_inverted_index.tribological | 8 |
| abstract_inverted_index.uncertainties | 37 |
| abstract_inverted_index.learning-based | 65 |
| abstract_inverted_index.reconstruction | 44 |
| abstract_inverted_index.Three-dimension | 29 |
| abstract_inverted_index.Dempster–Shafer | 120 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.69479022 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |