Comparison of Data Mining Model Performance in Heart Disease Detection with Feature Selection Application Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.21070/joincs.v8i1.1669
Penyakit jantung merupakan penyebab utama kematian di seluruh dunia, sehingga deteksi dini sangat penting untuk meningkatkan harapan hidup pasien. Dengan kemajuan teknologi data mining dan machine learning, prediksi penyakit jantung dapat dilakukan lebih akurat. Penelitian ini membandingkan kinerja prediksi model Logistic Regression, Decision Tree, Random Forest, K-Nearest Neighbors (KNN), dan Support Vector Machine (SVM) dalam mendeteksi penyakit jantung menggunakan UCI Heart Disease Dataset. Teknik feature selection—Filter Method, Wrapper Method (RFE), dan Embedded Method—diterapkan untuk meningkatkan akurasi prediksi dan mengurangi kompleksitas model. Hasil eksperimen menunjukkan bahwa SVM mencapai akurasi tertinggi sebesar 91,2%, diikuti Random Forest dengan 90,7%. Penggunaan feature selection terbukti meningkatkan kinerja model secara signifikan dengan mengurangi dimensi data dan menghindari overfitting. Temuan ini menunjukkan efektivitas SVM dan Random Forest dalam pengembangan sistem prediksi penyakit jantung yang efisien di lingkungan klinis. Kata kunci: Data Mining, Prediksi Penyakit Jantung, Feature Selection, Support Vector Machine
Related Topics
- Type
- article
- Language
- id
- Landing Page
- https://doi.org/10.21070/joincs.v8i1.1669
- https://joincs.umsida.ac.id/index.php/joincs/article/download/1669/1861
- OA Status
- hybrid
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4414104470
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414104470Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21070/joincs.v8i1.1669Digital Object Identifier
- Title
-
Comparison of Data Mining Model Performance in Heart Disease Detection with Feature Selection ApplicationWork title
- Type
-
articleOpenAlex work type
- Language
-
idPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-30Full publication date if available
- Authors
-
Wahyudin Wahyudin, Tole Sutikno, Rusydi Umar, Ahmad RidwanList of authors in order
- Landing page
-
https://doi.org/10.21070/joincs.v8i1.1669Publisher landing page
- PDF URL
-
https://joincs.umsida.ac.id/index.php/joincs/article/download/1669/1861Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://joincs.umsida.ac.id/index.php/joincs/article/download/1669/1861Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4414104470 |
|---|---|
| doi | https://doi.org/10.21070/joincs.v8i1.1669 |
| ids.doi | https://doi.org/10.21070/joincs.v8i1.1669 |
| ids.openalex | https://openalex.org/W4414104470 |
| fwci | 0.0 |
| type | article |
| title | Comparison of Data Mining Model Performance in Heart Disease Detection with Feature Selection Application |
| biblio.issue | 1 |
| biblio.volume | 8 |
| biblio.last_page | 93 |
| biblio.first_page | 87 |
| topics[0].id | https://openalex.org/T11396 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.9767000079154968 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3605 |
| topics[0].subfield.display_name | Health Information Management |
| topics[0].display_name | Artificial Intelligence in Healthcare |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | id |
| locations[0].id | doi:10.21070/joincs.v8i1.1669 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210190601 |
| locations[0].source.issn | 2541-5123 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2541-5123 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | JOINCS (Journal of Informatics Network and Computer Science) |
| locations[0].source.host_organization | https://openalex.org/P4310315274 |
| locations[0].source.host_organization_name | Universitas Muhammadiyah Sidoarjo |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315274 |
| locations[0].source.host_organization_lineage_names | Universitas Muhammadiyah Sidoarjo |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://joincs.umsida.ac.id/index.php/joincs/article/download/1669/1861 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | JOINCS (Journal of Informatics, Network, and Computer Science) |
| locations[0].landing_page_url | https://doi.org/10.21070/joincs.v8i1.1669 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100617959 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Wahyudin Wahyudin |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Widya Cholid Wahyudin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5059360335 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1595-2915 |
| authorships[1].author.display_name | Tole Sutikno |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tole Sutikno |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5113050439 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Rusydi Umar |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rusydi Umar |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5110431221 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Ahmad Ridwan |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ahmad Ridwan |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://joincs.umsida.ac.id/index.php/joincs/article/download/1669/1861 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Comparison of Data Mining Model Performance in Heart Disease Detection with Feature Selection Application |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11396 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.9767000079154968 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3605 |
| primary_topic.subfield.display_name | Health Information Management |
| primary_topic.display_name | Artificial Intelligence in Healthcare |
| related_works | https://openalex.org/W4205762803, https://openalex.org/W2535856026, https://openalex.org/W2265065644, https://openalex.org/W3147584709, https://openalex.org/W2134699697, https://openalex.org/W3017188156, https://openalex.org/W2322875716, https://openalex.org/W2977677679, https://openalex.org/W4386564352, https://openalex.org/W2952668426 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21070/joincs.v8i1.1669 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210190601 |
| best_oa_location.source.issn | 2541-5123 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2541-5123 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | JOINCS (Journal of Informatics Network and Computer Science) |
| best_oa_location.source.host_organization | https://openalex.org/P4310315274 |
| best_oa_location.source.host_organization_name | Universitas Muhammadiyah Sidoarjo |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315274 |
| best_oa_location.source.host_organization_lineage_names | Universitas Muhammadiyah Sidoarjo |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://joincs.umsida.ac.id/index.php/joincs/article/download/1669/1861 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | JOINCS (Journal of Informatics, Network, and Computer Science) |
| best_oa_location.landing_page_url | https://doi.org/10.21070/joincs.v8i1.1669 |
| primary_location.id | doi:10.21070/joincs.v8i1.1669 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210190601 |
| primary_location.source.issn | 2541-5123 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2541-5123 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | JOINCS (Journal of Informatics Network and Computer Science) |
| primary_location.source.host_organization | https://openalex.org/P4310315274 |
| primary_location.source.host_organization_name | Universitas Muhammadiyah Sidoarjo |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315274 |
| primary_location.source.host_organization_lineage_names | Universitas Muhammadiyah Sidoarjo |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://joincs.umsida.ac.id/index.php/joincs/article/download/1669/1861 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | JOINCS (Journal of Informatics, Network, and Computer Science) |
| primary_location.landing_page_url | https://doi.org/10.21070/joincs.v8i1.1669 |
| publication_date | 2025-04-30 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.di | 6, 128 |
| abstract_inverted_index.SVM | 85, 116 |
| abstract_inverted_index.UCI | 59 |
| abstract_inverted_index.dan | 24, 49, 70, 77, 109, 117 |
| abstract_inverted_index.ini | 35, 113 |
| abstract_inverted_index.Data | 133 |
| abstract_inverted_index.Kata | 131 |
| abstract_inverted_index.data | 22, 108 |
| abstract_inverted_index.dini | 11 |
| abstract_inverted_index.yang | 126 |
| abstract_inverted_index.(SVM) | 53 |
| abstract_inverted_index.Hasil | 81 |
| abstract_inverted_index.Heart | 60 |
| abstract_inverted_index.Tree, | 43 |
| abstract_inverted_index.bahwa | 84 |
| abstract_inverted_index.dalam | 54, 120 |
| abstract_inverted_index.dapat | 30 |
| abstract_inverted_index.hidup | 17 |
| abstract_inverted_index.lebih | 32 |
| abstract_inverted_index.model | 39, 102 |
| abstract_inverted_index.untuk | 14, 73 |
| abstract_inverted_index.utama | 4 |
| abstract_inverted_index.(KNN), | 48 |
| abstract_inverted_index.(RFE), | 69 |
| abstract_inverted_index.90,7%. | 95 |
| abstract_inverted_index.91,2%, | 90 |
| abstract_inverted_index.Dengan | 19 |
| abstract_inverted_index.Forest | 93, 119 |
| abstract_inverted_index.Method | 68 |
| abstract_inverted_index.Random | 44, 92, 118 |
| abstract_inverted_index.Teknik | 63 |
| abstract_inverted_index.Temuan | 112 |
| abstract_inverted_index.Vector | 51, 141 |
| abstract_inverted_index.dengan | 94, 105 |
| abstract_inverted_index.dunia, | 8 |
| abstract_inverted_index.kunci: | 132 |
| abstract_inverted_index.mining | 23 |
| abstract_inverted_index.model. | 80 |
| abstract_inverted_index.sangat | 12 |
| abstract_inverted_index.secara | 103 |
| abstract_inverted_index.sistem | 122 |
| abstract_inverted_index.Disease | 61 |
| abstract_inverted_index.Feature | 138 |
| abstract_inverted_index.Forest, | 45 |
| abstract_inverted_index.Machine | 52, 142 |
| abstract_inverted_index.Method, | 66 |
| abstract_inverted_index.Mining, | 134 |
| abstract_inverted_index.Support | 50, 140 |
| abstract_inverted_index.Wrapper | 67 |
| abstract_inverted_index.akurasi | 75, 87 |
| abstract_inverted_index.akurat. | 33 |
| abstract_inverted_index.deteksi | 10 |
| abstract_inverted_index.diikuti | 91 |
| abstract_inverted_index.dimensi | 107 |
| abstract_inverted_index.efisien | 127 |
| abstract_inverted_index.feature | 64, 97 |
| abstract_inverted_index.harapan | 16 |
| abstract_inverted_index.jantung | 1, 29, 57, 125 |
| abstract_inverted_index.kinerja | 37, 101 |
| abstract_inverted_index.klinis. | 130 |
| abstract_inverted_index.machine | 25 |
| abstract_inverted_index.pasien. | 18 |
| abstract_inverted_index.penting | 13 |
| abstract_inverted_index.sebesar | 89 |
| abstract_inverted_index.seluruh | 7 |
| abstract_inverted_index.Dataset. | 62 |
| abstract_inverted_index.Decision | 42 |
| abstract_inverted_index.Embedded | 71 |
| abstract_inverted_index.Jantung, | 137 |
| abstract_inverted_index.Logistic | 40 |
| abstract_inverted_index.Penyakit | 0, 136 |
| abstract_inverted_index.Prediksi | 135 |
| abstract_inverted_index.kemajuan | 20 |
| abstract_inverted_index.kematian | 5 |
| abstract_inverted_index.mencapai | 86 |
| abstract_inverted_index.penyakit | 28, 56, 124 |
| abstract_inverted_index.penyebab | 3 |
| abstract_inverted_index.prediksi | 27, 38, 76, 123 |
| abstract_inverted_index.sehingga | 9 |
| abstract_inverted_index.terbukti | 99 |
| abstract_inverted_index.K-Nearest | 46 |
| abstract_inverted_index.Neighbors | 47 |
| abstract_inverted_index.dilakukan | 31 |
| abstract_inverted_index.learning, | 26 |
| abstract_inverted_index.merupakan | 2 |
| abstract_inverted_index.selection | 98 |
| abstract_inverted_index.teknologi | 21 |
| abstract_inverted_index.tertinggi | 88 |
| abstract_inverted_index.Penelitian | 34 |
| abstract_inverted_index.Penggunaan | 96 |
| abstract_inverted_index.Selection, | 139 |
| abstract_inverted_index.eksperimen | 82 |
| abstract_inverted_index.lingkungan | 129 |
| abstract_inverted_index.mendeteksi | 55 |
| abstract_inverted_index.mengurangi | 78, 106 |
| abstract_inverted_index.signifikan | 104 |
| abstract_inverted_index.Regression, | 41 |
| abstract_inverted_index.efektivitas | 115 |
| abstract_inverted_index.menggunakan | 58 |
| abstract_inverted_index.menghindari | 110 |
| abstract_inverted_index.menunjukkan | 83, 114 |
| abstract_inverted_index.kompleksitas | 79 |
| abstract_inverted_index.meningkatkan | 15, 74, 100 |
| abstract_inverted_index.overfitting. | 111 |
| abstract_inverted_index.pengembangan | 121 |
| abstract_inverted_index.membandingkan | 36 |
| abstract_inverted_index.selection—Filter | 65 |
| abstract_inverted_index.Method—diterapkan | 72 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.51066056 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |