Comparison of Feature Extraction Algorithms for Prediction of Quality Characteristics Article Swipe
Simon Cramer
,
Daniel Buschmann
,
Robert Schmitt
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1016/j.procir.2022.09.061
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1016/j.procir.2022.09.061
579
Related Topics
Concepts
Principal component analysis
Pipeline (software)
Feature extraction
Autoencoder
Computer science
Artificial intelligence
Feature (linguistics)
Process (computing)
Quality (philosophy)
Data mining
Pattern recognition (psychology)
Component (thermodynamics)
Machine learning
Artificial neural network
Philosophy
Programming language
Thermodynamics
Epistemology
Operating system
Physics
Linguistics
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.procir.2022.09.061
- OA Status
- diamond
- Cited By
- 2
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4296626335
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4296626335Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.procir.2022.09.061Digital Object Identifier
- Title
-
Comparison of Feature Extraction Algorithms for Prediction of Quality CharacteristicsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
Simon Cramer, Daniel Buschmann, Robert SchmittList of authors in order
- Landing page
-
https://doi.org/10.1016/j.procir.2022.09.061Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.procir.2022.09.061Direct OA link when available
- Concepts
-
Principal component analysis, Pipeline (software), Feature extraction, Autoencoder, Computer science, Artificial intelligence, Feature (linguistics), Process (computing), Quality (philosophy), Data mining, Pattern recognition (psychology), Component (thermodynamics), Machine learning, Artificial neural network, Philosophy, Programming language, Thermodynamics, Epistemology, Operating system, Physics, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4296626335 |
|---|---|
| doi | https://doi.org/10.1016/j.procir.2022.09.061 |
| ids.doi | https://doi.org/10.1016/j.procir.2022.09.061 |
| ids.openalex | https://openalex.org/W4296626335 |
| fwci | 0.29855571 |
| type | article |
| title | Comparison of Feature Extraction Algorithms for Prediction of Quality Characteristics |
| awards[0].id | https://openalex.org/G7300938430 |
| awards[0].funder_id | https://openalex.org/F4320320879 |
| awards[0].display_name | |
| awards[0].funder_award_id | 390621612 |
| awards[0].funder_display_name | Deutsche Forschungsgemeinschaft |
| awards[1].id | https://openalex.org/G69884316 |
| awards[1].funder_id | https://openalex.org/F4320320879 |
| awards[1].display_name | |
| awards[1].funder_award_id | EXC-2023 |
| awards[1].funder_display_name | Deutsche Forschungsgemeinschaft |
| biblio.issue | |
| biblio.volume | 112 |
| biblio.last_page | 584 |
| biblio.first_page | 579 |
| topics[0].id | https://openalex.org/T10876 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.993399977684021 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Fault Detection and Control Systems |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9932000041007996 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T12535 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9898999929428101 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Data Classification |
| funders[0].id | https://openalex.org/F4320320879 |
| funders[0].ror | https://ror.org/018mejw64 |
| funders[0].display_name | Deutsche Forschungsgemeinschaft |
| funders[1].id | https://openalex.org/F4320321429 |
| funders[1].ror | https://ror.org/05vmfpy67 |
| funders[1].display_name | Allianz Industrie Forschung |
| funders[2].id | https://openalex.org/F4320323803 |
| funders[2].ror | https://ror.org/02vgg2808 |
| funders[2].display_name | Bundesministerium für Wirtschaft und Energie |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C27438332 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7520186305046082 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2873 |
| concepts[0].display_name | Principal component analysis |
| concepts[1].id | https://openalex.org/C43521106 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7129095792770386 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[1].display_name | Pipeline (software) |
| concepts[2].id | https://openalex.org/C52622490 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6941745281219482 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[2].display_name | Feature extraction |
| concepts[3].id | https://openalex.org/C101738243 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6881377696990967 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[3].display_name | Autoencoder |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.673046886920929 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5700342655181885 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5351579785346985 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C98045186 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5140846371650696 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[7].display_name | Process (computing) |
| concepts[8].id | https://openalex.org/C2779530757 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5094664692878723 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[8].display_name | Quality (philosophy) |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.5079296231269836 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.47462642192840576 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C168167062 |
| concepts[11].level | 2 |
| concepts[11].score | 0.45404329895973206 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1117970 |
| concepts[11].display_name | Component (thermodynamics) |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.44008946418762207 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C50644808 |
| concepts[13].level | 2 |
| concepts[13].score | 0.2394062876701355 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[13].display_name | Artificial neural network |
| concepts[14].id | https://openalex.org/C138885662 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[14].display_name | Philosophy |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| concepts[16].id | https://openalex.org/C97355855 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[16].display_name | Thermodynamics |
| concepts[17].id | https://openalex.org/C111472728 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[17].display_name | Epistemology |
| concepts[18].id | https://openalex.org/C111919701 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[18].display_name | Operating system |
| concepts[19].id | https://openalex.org/C121332964 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[19].display_name | Physics |
| concepts[20].id | https://openalex.org/C41895202 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[20].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/principal-component-analysis |
| keywords[0].score | 0.7520186305046082 |
| keywords[0].display_name | Principal component analysis |
| keywords[1].id | https://openalex.org/keywords/pipeline |
| keywords[1].score | 0.7129095792770386 |
| keywords[1].display_name | Pipeline (software) |
| keywords[2].id | https://openalex.org/keywords/feature-extraction |
| keywords[2].score | 0.6941745281219482 |
| keywords[2].display_name | Feature extraction |
| keywords[3].id | https://openalex.org/keywords/autoencoder |
| keywords[3].score | 0.6881377696990967 |
| keywords[3].display_name | Autoencoder |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.673046886920929 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5700342655181885 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.5351579785346985 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/process |
| keywords[7].score | 0.5140846371650696 |
| keywords[7].display_name | Process (computing) |
| keywords[8].id | https://openalex.org/keywords/quality |
| keywords[8].score | 0.5094664692878723 |
| keywords[8].display_name | Quality (philosophy) |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.5079296231269836 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.47462642192840576 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/component |
| keywords[11].score | 0.45404329895973206 |
| keywords[11].display_name | Component (thermodynamics) |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.44008946418762207 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[13].score | 0.2394062876701355 |
| keywords[13].display_name | Artificial neural network |
| language | en |
| locations[0].id | doi:10.1016/j.procir.2022.09.061 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898565713 |
| locations[0].source.issn | 2212-8271 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2212-8271 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Procedia CIRP |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Procedia CIRP |
| locations[0].landing_page_url | https://doi.org/10.1016/j.procir.2022.09.061 |
| locations[1].id | pmh:oai:publica.fraunhofer.de:publica/445431 |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | journal article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://publica.fraunhofer.de/handle/publica/445431 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5019267836 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6342-8157 |
| authorships[0].author.display_name | Simon Cramer |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I887968799 |
| authorships[0].affiliations[0].raw_affiliation_string | Chair of Production Metrology and Quality Management WZL | RWTH Aachen University, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I887968799 |
| authorships[0].institutions[0].ror | https://ror.org/04xfq0f34 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I887968799 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | RWTH Aachen University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Simon Cramer |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Chair of Production Metrology and Quality Management WZL | RWTH Aachen University, Germany |
| authorships[1].author.id | https://openalex.org/A5018196105 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8363-1331 |
| authorships[1].author.display_name | Daniel Buschmann |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I887968799 |
| authorships[1].affiliations[0].raw_affiliation_string | Chair of Production Metrology and Quality Management WZL | RWTH Aachen University, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I887968799 |
| authorships[1].institutions[0].ror | https://ror.org/04xfq0f34 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I887968799 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | RWTH Aachen University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Daniel Buschmann |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Chair of Production Metrology and Quality Management WZL | RWTH Aachen University, Germany |
| authorships[2].author.id | https://openalex.org/A5045094368 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0011-5962 |
| authorships[2].author.display_name | Robert Schmitt |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I887968799 |
| authorships[2].affiliations[0].raw_affiliation_string | Chair of Production Metrology and Quality Management WZL | RWTH Aachen University, Germany |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210096398 |
| authorships[2].affiliations[1].raw_affiliation_string | Fraunhofer Institute for Production Technology, Aachen Germany |
| authorships[2].institutions[0].id | https://openalex.org/I4210096398 |
| authorships[2].institutions[0].ror | https://ror.org/00t0rcy29 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210096398, https://openalex.org/I4923324 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Fraunhofer Institute for Production Technology IPT |
| authorships[2].institutions[1].id | https://openalex.org/I887968799 |
| authorships[2].institutions[1].ror | https://ror.org/04xfq0f34 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I887968799 |
| authorships[2].institutions[1].country_code | DE |
| authorships[2].institutions[1].display_name | RWTH Aachen University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Robert H. Schmitt |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Chair of Production Metrology and Quality Management WZL | RWTH Aachen University, Germany, Fraunhofer Institute for Production Technology, Aachen Germany |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.procir.2022.09.061 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Comparison of Feature Extraction Algorithms for Prediction of Quality Characteristics |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10876 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.993399977684021 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Fault Detection and Control Systems |
| related_works | https://openalex.org/W3013693939, https://openalex.org/W2566616303, https://openalex.org/W2159052453, https://openalex.org/W3131327266, https://openalex.org/W2734887215, https://openalex.org/W2803255133, https://openalex.org/W4297051394, https://openalex.org/W2752972570, https://openalex.org/W4386815338, https://openalex.org/W4310873165 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.procir.2022.09.061 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898565713 |
| best_oa_location.source.issn | 2212-8271 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2212-8271 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Procedia CIRP |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Procedia CIRP |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.procir.2022.09.061 |
| primary_location.id | doi:10.1016/j.procir.2022.09.061 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898565713 |
| primary_location.source.issn | 2212-8271 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2212-8271 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Procedia CIRP |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Procedia CIRP |
| primary_location.landing_page_url | https://doi.org/10.1016/j.procir.2022.09.061 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3140969223, https://openalex.org/W2772511931, https://openalex.org/W6772383505, https://openalex.org/W6768575215, https://openalex.org/W6686031812, https://openalex.org/W6802797615, https://openalex.org/W6794092702, https://openalex.org/W6794967877, https://openalex.org/W6766596047, https://openalex.org/W3088561064, https://openalex.org/W2098263691, https://openalex.org/W1986760892, https://openalex.org/W3105640742, https://openalex.org/W2964306294, https://openalex.org/W2976818350, https://openalex.org/W3204616723, https://openalex.org/W2378208052, https://openalex.org/W2966284335, https://openalex.org/W3048191395, https://openalex.org/W2559252370, https://openalex.org/W4238297360 |
| referenced_works_count | 21 |
| abstract_inverted_index.579 | 0 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5019267836 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I887968799 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.53007554 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |