Comparison of Machine Learning Techniques for Condition Assessment of Sewer Network Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1109/access.2022.3222823
Assessment of sewer condition is one of the critical steps in asset management and support investment decisions; therefore, condition assessment models with high accuracy are important that can help utility managers and other authorities correctly assess the current condition of the sewage network and effectively initiate maintenance and rehabilitation strategies. The main objective of this research is to assess the potential application of machine learning (ML) algorithms for predicting the condition of sewer pipes with a case study in Ålesund city, Norway. Nine physical factors (i.e., age, diameter, depth, slope, length, pipe type, material, pipe form, and connection type) and ten environmental factors (i.e., rainfall, geology, landslide area, building area, population, land cover, groundwater, traffic volume, distance to road, and soil type) were used to assess the sewer conditions employing seventeen ML models. After processing the sewer inspections, 1159 of 1449 individual pipelines were used to train the sewer condition model. The performance of ML models was validated using the 290 remaining inspected sewer pipes. The area under the Receiver Operating Characteristic (AUC-ROC) curve and accuracy (ACC) showed that the Random Forest (AUC-ROC = 77.6% and ACC = 78.3%) is a sensitive model for predicting the condition of sewer pipes in the study area. Based on the Random Forest model, maps of predicted conditions of sewers were generated that may be useful for utilities and water managers to establish future sewer system maintenance strategies.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2022.3222823
- https://ieeexplore.ieee.org/ielx7/6287639/6514899/09954004.pdf
- OA Status
- gold
- Cited By
- 18
- References
- 89
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4312371890
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4312371890Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2022.3222823Digital Object Identifier
- Title
-
Comparison of Machine Learning Techniques for Condition Assessment of Sewer NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
Lam Van Nguyen, Dieu Tien Bui, Razak SeiduList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2022.3222823Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/09954004.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/09954004.pdfDirect OA link when available
- Concepts
-
Sanitary sewer, Asset management, Environmental science, Civil engineering, Pipeline transport, Predictive modelling, Computer science, Investment (military), Hydrology (agriculture), Transport engineering, Engineering, Environmental engineering, Geotechnical engineering, Machine learning, Political science, Economics, Finance, Law, PoliticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
18Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 9, 2024: 6, 2023: 3Per-year citation counts (last 5 years)
- References (count)
-
89Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4312371890 |
|---|---|
| doi | https://doi.org/10.1109/access.2022.3222823 |
| ids.doi | https://doi.org/10.1109/access.2022.3222823 |
| ids.openalex | https://openalex.org/W4312371890 |
| fwci | 2.60030287 |
| type | article |
| title | Comparison of Machine Learning Techniques for Condition Assessment of Sewer Network |
| biblio.issue | |
| biblio.volume | 10 |
| biblio.last_page | 124258 |
| biblio.first_page | 124238 |
| topics[0].id | https://openalex.org/T11606 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Infrastructure Maintenance and Monitoring |
| topics[1].id | https://openalex.org/T11220 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9986000061035156 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Water Systems and Optimization |
| topics[2].id | https://openalex.org/T12233 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9983999729156494 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Geotechnical Engineering and Underground Structures |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C190714865 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8020374774932861 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1805497 |
| concepts[0].display_name | Sanitary sewer |
| concepts[1].id | https://openalex.org/C2776517139 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5525633096694946 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q873442 |
| concepts[1].display_name | Asset management |
| concepts[2].id | https://openalex.org/C39432304 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5381876230239868 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[2].display_name | Environmental science |
| concepts[3].id | https://openalex.org/C147176958 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5095117688179016 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q77590 |
| concepts[3].display_name | Civil engineering |
| concepts[4].id | https://openalex.org/C175309249 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4655962884426117 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q725864 |
| concepts[4].display_name | Pipeline transport |
| concepts[5].id | https://openalex.org/C45804977 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4182160496711731 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7239673 |
| concepts[5].display_name | Predictive modelling |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.41497641801834106 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C27548731 |
| concepts[7].level | 3 |
| concepts[7].score | 0.41214123368263245 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q88272 |
| concepts[7].display_name | Investment (military) |
| concepts[8].id | https://openalex.org/C76886044 |
| concepts[8].level | 2 |
| concepts[8].score | 0.33507585525512695 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2883300 |
| concepts[8].display_name | Hydrology (agriculture) |
| concepts[9].id | https://openalex.org/C22212356 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3299826979637146 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q775325 |
| concepts[9].display_name | Transport engineering |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.31772223114967346 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C87717796 |
| concepts[11].level | 1 |
| concepts[11].score | 0.31102126836776733 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q146326 |
| concepts[11].display_name | Environmental engineering |
| concepts[12].id | https://openalex.org/C187320778 |
| concepts[12].level | 1 |
| concepts[12].score | 0.26553088426589966 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1349130 |
| concepts[12].display_name | Geotechnical engineering |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.21178531646728516 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C17744445 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[14].display_name | Political science |
| concepts[15].id | https://openalex.org/C162324750 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[15].display_name | Economics |
| concepts[16].id | https://openalex.org/C10138342 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[16].display_name | Finance |
| concepts[17].id | https://openalex.org/C199539241 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[17].display_name | Law |
| concepts[18].id | https://openalex.org/C94625758 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[18].display_name | Politics |
| keywords[0].id | https://openalex.org/keywords/sanitary-sewer |
| keywords[0].score | 0.8020374774932861 |
| keywords[0].display_name | Sanitary sewer |
| keywords[1].id | https://openalex.org/keywords/asset-management |
| keywords[1].score | 0.5525633096694946 |
| keywords[1].display_name | Asset management |
| keywords[2].id | https://openalex.org/keywords/environmental-science |
| keywords[2].score | 0.5381876230239868 |
| keywords[2].display_name | Environmental science |
| keywords[3].id | https://openalex.org/keywords/civil-engineering |
| keywords[3].score | 0.5095117688179016 |
| keywords[3].display_name | Civil engineering |
| keywords[4].id | https://openalex.org/keywords/pipeline-transport |
| keywords[4].score | 0.4655962884426117 |
| keywords[4].display_name | Pipeline transport |
| keywords[5].id | https://openalex.org/keywords/predictive-modelling |
| keywords[5].score | 0.4182160496711731 |
| keywords[5].display_name | Predictive modelling |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.41497641801834106 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/investment |
| keywords[7].score | 0.41214123368263245 |
| keywords[7].display_name | Investment (military) |
| keywords[8].id | https://openalex.org/keywords/hydrology |
| keywords[8].score | 0.33507585525512695 |
| keywords[8].display_name | Hydrology (agriculture) |
| keywords[9].id | https://openalex.org/keywords/transport-engineering |
| keywords[9].score | 0.3299826979637146 |
| keywords[9].display_name | Transport engineering |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.31772223114967346 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/environmental-engineering |
| keywords[11].score | 0.31102126836776733 |
| keywords[11].display_name | Environmental engineering |
| keywords[12].id | https://openalex.org/keywords/geotechnical-engineering |
| keywords[12].score | 0.26553088426589966 |
| keywords[12].display_name | Geotechnical engineering |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.21178531646728516 |
| keywords[13].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1109/access.2022.3222823 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/09954004.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2022.3222823 |
| locations[1].id | pmh:oai:doaj.org/article:e5e588c11e8a47959d708a050007952b |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 10, Pp 124238-124258 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/e5e588c11e8a47959d708a050007952b |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5014810039 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0475-1365 |
| authorships[0].author.display_name | Lam Van Nguyen |
| authorships[0].countries | NO, VN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I204778367 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Ocean Operations and Civil Engineering, Faculty of Engineering, Smart Water and Environmental Engineering Group, Norwegian University of Science and Technology, Ålesund, Norway |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I29199639 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Geodesy, Faculty of Geomatics and Land Administration, Hanoi University of Mining and Geology, Vietnam |
| authorships[0].institutions[0].id | https://openalex.org/I204778367 |
| authorships[0].institutions[0].ror | https://ror.org/05xg72x27 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I204778367 |
| authorships[0].institutions[0].country_code | NO |
| authorships[0].institutions[0].display_name | Norwegian University of Science and Technology |
| authorships[0].institutions[1].id | https://openalex.org/I29199639 |
| authorships[0].institutions[1].ror | https://ror.org/01rw3qm79 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I29199639 |
| authorships[0].institutions[1].country_code | VN |
| authorships[0].institutions[1].display_name | Hanoi University of Mining and Geology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lam Van Nguyen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Geodesy, Faculty of Geomatics and Land Administration, Hanoi University of Mining and Geology, Vietnam, Department of Ocean Operations and Civil Engineering, Faculty of Engineering, Smart Water and Environmental Engineering Group, Norwegian University of Science and Technology, Ålesund, Norway |
| authorships[1].author.id | https://openalex.org/A5076352077 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5161-6479 |
| authorships[1].author.display_name | Dieu Tien Bui |
| authorships[1].countries | NO |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2801380234 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Business and IT, GIS Group, University of South-Eastern Norway, Bø i Telemark, Norway |
| authorships[1].institutions[0].id | https://openalex.org/I2801380234 |
| authorships[1].institutions[0].ror | https://ror.org/05ecg5h20 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I2801380234 |
| authorships[1].institutions[0].country_code | NO |
| authorships[1].institutions[0].display_name | University of South-Eastern Norway |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dieu Tien Bui |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Business and IT, GIS Group, University of South-Eastern Norway, Bø i Telemark, Norway |
| authorships[2].author.id | https://openalex.org/A5070290072 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3137-0915 |
| authorships[2].author.display_name | Razak Seidu |
| authorships[2].countries | NO |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I204778367 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Ocean Operations and Civil Engineering, Faculty of Engineering, Smart Water and Environmental Engineering Group, Norwegian University of Science and Technology, Ålesund, Norway |
| authorships[2].institutions[0].id | https://openalex.org/I204778367 |
| authorships[2].institutions[0].ror | https://ror.org/05xg72x27 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I204778367 |
| authorships[2].institutions[0].country_code | NO |
| authorships[2].institutions[0].display_name | Norwegian University of Science and Technology |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Razak Seidu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Ocean Operations and Civil Engineering, Faculty of Engineering, Smart Water and Environmental Engineering Group, Norwegian University of Science and Technology, Ålesund, Norway |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/09954004.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Comparison of Machine Learning Techniques for Condition Assessment of Sewer Network |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11606 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Infrastructure Maintenance and Monitoring |
| related_works | https://openalex.org/W636499331, https://openalex.org/W4238923964, https://openalex.org/W2108013114, https://openalex.org/W4256631478, https://openalex.org/W1919243393, https://openalex.org/W2363886831, https://openalex.org/W1571951087, https://openalex.org/W2294114979, https://openalex.org/W1948860882, https://openalex.org/W1990710346 |
| cited_by_count | 18 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 9 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2022.3222823 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/09954004.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2022.3222823 |
| primary_location.id | doi:10.1109/access.2022.3222823 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/09954004.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2022.3222823 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2076201204, https://openalex.org/W3023211159, https://openalex.org/W2884486887, https://openalex.org/W3117495151, https://openalex.org/W4224255860, https://openalex.org/W2902322485, https://openalex.org/W2167101736, https://openalex.org/W2985668307, https://openalex.org/W3039848812, https://openalex.org/W3192024088, https://openalex.org/W2914937516, https://openalex.org/W2271579450, https://openalex.org/W1986153303, https://openalex.org/W2994906635, https://openalex.org/W3133797155, https://openalex.org/W2038212585, https://openalex.org/W3024225130, https://openalex.org/W3037064601, https://openalex.org/W2794383999, https://openalex.org/W2122111042, https://openalex.org/W3134499966, https://openalex.org/W1969094789, https://openalex.org/W3163773593, https://openalex.org/W3170817016, https://openalex.org/W2920830024, https://openalex.org/W4255455317, https://openalex.org/W1981020133, https://openalex.org/W2065454702, https://openalex.org/W3164093342, https://openalex.org/W4239510810, https://openalex.org/W3034926680, https://openalex.org/W2883087726, https://openalex.org/W2807115920, https://openalex.org/W3041666922, https://openalex.org/W2909796381, https://openalex.org/W2995098893, https://openalex.org/W4285098376, https://openalex.org/W1988790447, https://openalex.org/W2070493638, https://openalex.org/W2148807980, https://openalex.org/W6639709970, https://openalex.org/W3081731186, https://openalex.org/W2117063635, https://openalex.org/W6681011923, https://openalex.org/W6629804754, https://openalex.org/W2056132907, https://openalex.org/W6745609711, https://openalex.org/W2998538879, https://openalex.org/W2970762388, https://openalex.org/W4221028466, https://openalex.org/W4206668998, https://openalex.org/W2969293147, https://openalex.org/W2999010889, https://openalex.org/W2808015097, https://openalex.org/W3216637508, https://openalex.org/W2979012513, https://openalex.org/W2888728157, https://openalex.org/W2978147300, https://openalex.org/W6786511749, https://openalex.org/W2988541000, https://openalex.org/W3039761020, https://openalex.org/W2794889215, https://openalex.org/W4238927122, https://openalex.org/W4283802433, https://openalex.org/W1575326692, https://openalex.org/W4210551400, https://openalex.org/W3027450078, https://openalex.org/W3030904743, https://openalex.org/W2540211946, https://openalex.org/W3211509139, https://openalex.org/W2911964244, https://openalex.org/W1969761972, https://openalex.org/W2889864630, https://openalex.org/W2248644291, https://openalex.org/W3117829857, https://openalex.org/W6675354045, https://openalex.org/W3025439369, https://openalex.org/W2955716942, https://openalex.org/W2555572357, https://openalex.org/W1987203535, https://openalex.org/W2768348081, https://openalex.org/W2979824429, https://openalex.org/W2101234009, https://openalex.org/W3106461837, https://openalex.org/W2330820318, https://openalex.org/W2960031875, https://openalex.org/W1905898145, https://openalex.org/W1502922572, https://openalex.org/W2140115545 |
| referenced_works_count | 89 |
| abstract_inverted_index.a | 75, 190 |
| abstract_inverted_index.ML | 131, 154 |
| abstract_inverted_index.be | 220 |
| abstract_inverted_index.in | 10, 78, 200 |
| abstract_inverted_index.is | 4, 56, 189 |
| abstract_inverted_index.of | 1, 6, 39, 53, 62, 71, 139, 153, 197, 211, 214 |
| abstract_inverted_index.on | 205 |
| abstract_inverted_index.to | 57, 117, 124, 145, 227 |
| abstract_inverted_index.290 | 160 |
| abstract_inverted_index.ACC | 186 |
| abstract_inverted_index.The | 50, 151, 165 |
| abstract_inverted_index.and | 13, 31, 43, 47, 96, 99, 119, 174, 185, 224 |
| abstract_inverted_index.are | 24 |
| abstract_inverted_index.can | 27 |
| abstract_inverted_index.for | 67, 193, 222 |
| abstract_inverted_index.may | 219 |
| abstract_inverted_index.one | 5 |
| abstract_inverted_index.ten | 100 |
| abstract_inverted_index.the | 7, 36, 40, 59, 69, 126, 135, 147, 159, 168, 179, 195, 201, 206 |
| abstract_inverted_index.was | 156 |
| abstract_inverted_index.(ML) | 65 |
| abstract_inverted_index.1159 | 138 |
| abstract_inverted_index.1449 | 140 |
| abstract_inverted_index.Nine | 82 |
| abstract_inverted_index.age, | 86 |
| abstract_inverted_index.area | 166 |
| abstract_inverted_index.case | 76 |
| abstract_inverted_index.help | 28 |
| abstract_inverted_index.high | 22 |
| abstract_inverted_index.land | 111 |
| abstract_inverted_index.main | 51 |
| abstract_inverted_index.maps | 210 |
| abstract_inverted_index.pipe | 91, 94 |
| abstract_inverted_index.soil | 120 |
| abstract_inverted_index.that | 26, 178, 218 |
| abstract_inverted_index.this | 54 |
| abstract_inverted_index.used | 123, 144 |
| abstract_inverted_index.were | 122, 143, 216 |
| abstract_inverted_index.with | 21, 74 |
| abstract_inverted_index.(ACC) | 176 |
| abstract_inverted_index.After | 133 |
| abstract_inverted_index.Based | 204 |
| abstract_inverted_index.area, | 107, 109 |
| abstract_inverted_index.area. | 203 |
| abstract_inverted_index.asset | 11 |
| abstract_inverted_index.city, | 80 |
| abstract_inverted_index.curve | 173 |
| abstract_inverted_index.form, | 95 |
| abstract_inverted_index.model | 192 |
| abstract_inverted_index.other | 32 |
| abstract_inverted_index.pipes | 73, 199 |
| abstract_inverted_index.road, | 118 |
| abstract_inverted_index.sewer | 2, 72, 127, 136, 148, 163, 198, 230 |
| abstract_inverted_index.steps | 9 |
| abstract_inverted_index.study | 77, 202 |
| abstract_inverted_index.train | 146 |
| abstract_inverted_index.type) | 98, 121 |
| abstract_inverted_index.type, | 92 |
| abstract_inverted_index.under | 167 |
| abstract_inverted_index.using | 158 |
| abstract_inverted_index.water | 225 |
| abstract_inverted_index.(i.e., | 85, 103 |
| abstract_inverted_index.Forest | 181, 208 |
| abstract_inverted_index.Random | 180, 207 |
| abstract_inverted_index.assess | 35, 58, 125 |
| abstract_inverted_index.cover, | 112 |
| abstract_inverted_index.depth, | 88 |
| abstract_inverted_index.future | 229 |
| abstract_inverted_index.model, | 209 |
| abstract_inverted_index.model. | 150 |
| abstract_inverted_index.models | 20, 155 |
| abstract_inverted_index.pipes. | 164 |
| abstract_inverted_index.sewage | 41 |
| abstract_inverted_index.sewers | 215 |
| abstract_inverted_index.showed | 177 |
| abstract_inverted_index.slope, | 89 |
| abstract_inverted_index.system | 231 |
| abstract_inverted_index.useful | 221 |
| abstract_inverted_index.Norway. | 81 |
| abstract_inverted_index.current | 37 |
| abstract_inverted_index.factors | 84, 102 |
| abstract_inverted_index.length, | 90 |
| abstract_inverted_index.machine | 63 |
| abstract_inverted_index.models. | 132 |
| abstract_inverted_index.network | 42 |
| abstract_inverted_index.support | 14 |
| abstract_inverted_index.traffic | 114 |
| abstract_inverted_index.utility | 29 |
| abstract_inverted_index.volume, | 115 |
| abstract_inverted_index.= | 183, 187 |
| abstract_inverted_index.(AUC-ROC | 182 |
| abstract_inverted_index.Receiver | 169 |
| abstract_inverted_index.accuracy | 23, 175 |
| abstract_inverted_index.building | 108 |
| abstract_inverted_index.critical | 8 |
| abstract_inverted_index.distance | 116 |
| abstract_inverted_index.geology, | 105 |
| abstract_inverted_index.initiate | 45 |
| abstract_inverted_index.learning | 64 |
| abstract_inverted_index.managers | 30, 226 |
| abstract_inverted_index.physical | 83 |
| abstract_inverted_index.research | 55 |
| abstract_inverted_index.(AUC-ROC) | 172 |
| abstract_inverted_index.Operating | 170 |
| abstract_inverted_index.condition | 3, 18, 38, 70, 149, 196 |
| abstract_inverted_index.correctly | 34 |
| abstract_inverted_index.diameter, | 87 |
| abstract_inverted_index.employing | 129 |
| abstract_inverted_index.establish | 228 |
| abstract_inverted_index.generated | 217 |
| abstract_inverted_index.important | 25 |
| abstract_inverted_index.inspected | 162 |
| abstract_inverted_index.landslide | 106 |
| abstract_inverted_index.material, | 93 |
| abstract_inverted_index.objective | 52 |
| abstract_inverted_index.pipelines | 142 |
| abstract_inverted_index.potential | 60 |
| abstract_inverted_index.predicted | 212 |
| abstract_inverted_index.rainfall, | 104 |
| abstract_inverted_index.remaining | 161 |
| abstract_inverted_index.sensitive | 191 |
| abstract_inverted_index.seventeen | 130 |
| abstract_inverted_index.utilities | 223 |
| abstract_inverted_index.validated | 157 |
| abstract_inverted_index.Assessment | 0 |
| abstract_inverted_index.algorithms | 66 |
| abstract_inverted_index.assessment | 19 |
| abstract_inverted_index.conditions | 128, 213 |
| abstract_inverted_index.connection | 97 |
| abstract_inverted_index.decisions; | 16 |
| abstract_inverted_index.individual | 141 |
| abstract_inverted_index.investment | 15 |
| abstract_inverted_index.management | 12 |
| abstract_inverted_index.predicting | 68, 194 |
| abstract_inverted_index.processing | 134 |
| abstract_inverted_index.therefore, | 17 |
| abstract_inverted_index.application | 61 |
| abstract_inverted_index.authorities | 33 |
| abstract_inverted_index.effectively | 44 |
| abstract_inverted_index.maintenance | 46, 232 |
| abstract_inverted_index.performance | 152 |
| abstract_inverted_index.population, | 110 |
| abstract_inverted_index.strategies. | 49, 233 |
| abstract_inverted_index.77.6% | 184 |
| abstract_inverted_index.groundwater, | 113 |
| abstract_inverted_index.inspections, | 137 |
| abstract_inverted_index.78.3%) | 188 |
| abstract_inverted_index.environmental | 101 |
| abstract_inverted_index.Ålesund | 79 |
| abstract_inverted_index.Characteristic | 171 |
| abstract_inverted_index.rehabilitation | 48 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/6 |
| sustainable_development_goals[0].score | 0.8299999833106995 |
| sustainable_development_goals[0].display_name | Clean water and sanitation |
| citation_normalized_percentile.value | 0.86387153 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |