Comparison of modelled diffusion-derived electrical conductivities found using magnetic resonance imaging Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3389/fradi.2025.1492479
Introduction Magnetic resonance-based electrical conductivity imaging offers a promising new contrast mechanism to enhance disease diagnosis. Conductivity tensor imaging (CTI) combines data from MR diffusion microstructure imaging to reconstruct electrodeless low-frequency conductivity images. However, different microstructure imaging methods rely on varying diffusion models and parameters, leading to divergent tissue conductivity estimates. This study investigates the variability in conductivity predictions across different microstructure models and evaluates their alignment with experimental observations. Methods We used publicly available diffusion databases from neurotypical adults to extract microstructure parameters for three diffusion-based brain models: Neurite Orientation Dispersion and Density Imaging (NODDI), Soma and Neurite Density Imaging (SANDI), and Spherical Mean technique (SMT) conductivity predictions were calculated for gray matter (GM) and white matter (WM) tissues using each model. Comparative analyses were performed to assess the range of predicted conductivities and the consistency between bilateral tissue conductivities for each method. Results Significant variability in conductivity estimates was observed across the three models. Each method predicted distinct conductivity values for GM and WM tissues, with notable differences in the range of conductivities observed for specific tissue examples. Despite the variability, many WM and GM tissues exhibited symmetric bilateral conductivities within each microstructure model. SMT yielded conductivity estimates closer to values reported in experimental studies, while none of the methods aligned with spectroscopic models of tissue conductivity. Discussion and conclusion Our findings highlight substantial discrepancies in tissue conductivity estimates generated by different diffusion models, underscoring the challenge of selecting an appropriate model for low-frequency electrical conductivity imaging. SMT demonstrated better alignment with experimental results. However other microstructure models may produce better tissue discrimination.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fradi.2025.1492479
- OA Status
- gold
- References
- 48
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406717556
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406717556Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fradi.2025.1492479Digital Object Identifier
- Title
-
Comparison of modelled diffusion-derived electrical conductivities found using magnetic resonance imagingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-22Full publication date if available
- Authors
-
Sasha Hakhu, Leland Hu, Scott C. Beeman, Rosalind SadleirList of authors in order
- Landing page
-
https://doi.org/10.3389/fradi.2025.1492479Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3389/fradi.2025.1492479Direct OA link when available
- Concepts
-
Diffusion MRI, Conductivity, Microstructure, Materials science, Nuclear magnetic resonance, Magnetic resonance imaging, Diffusion, White matter, Electrical resistivity and conductivity, Fractional anisotropy, Anisotropy, Biological system, Biomedical engineering, Chemistry, Physics, Medicine, Optics, Thermodynamics, Radiology, Metallurgy, Quantum mechanics, Biology, Physical chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
48Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406717556 |
|---|---|
| doi | https://doi.org/10.3389/fradi.2025.1492479 |
| ids.doi | https://doi.org/10.3389/fradi.2025.1492479 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39917284 |
| ids.openalex | https://openalex.org/W4406717556 |
| fwci | 0.0 |
| type | article |
| title | Comparison of modelled diffusion-derived electrical conductivities found using magnetic resonance imaging |
| biblio.issue | |
| biblio.volume | 5 |
| biblio.last_page | 1492479 |
| biblio.first_page | 1492479 |
| topics[0].id | https://openalex.org/T11304 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Advanced Neuroimaging Techniques and Applications |
| topics[1].id | https://openalex.org/T10241 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.988099992275238 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | Functional Brain Connectivity Studies |
| topics[2].id | https://openalex.org/T10378 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9861000180244446 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Advanced MRI Techniques and Applications |
| is_xpac | False |
| apc_list.value | 1900 |
| apc_list.currency | USD |
| apc_list.value_usd | 1900 |
| apc_paid.value | 1900 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1900 |
| concepts[0].id | https://openalex.org/C149550507 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8279497623443604 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q899360 |
| concepts[0].display_name | Diffusion MRI |
| concepts[1].id | https://openalex.org/C131540310 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7926658391952515 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q907564 |
| concepts[1].display_name | Conductivity |
| concepts[2].id | https://openalex.org/C87976508 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5650477409362793 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1498213 |
| concepts[2].display_name | Microstructure |
| concepts[3].id | https://openalex.org/C192562407 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5420982837677002 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[3].display_name | Materials science |
| concepts[4].id | https://openalex.org/C46141821 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5260624289512634 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q209402 |
| concepts[4].display_name | Nuclear magnetic resonance |
| concepts[5].id | https://openalex.org/C143409427 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5240124464035034 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q161238 |
| concepts[5].display_name | Magnetic resonance imaging |
| concepts[6].id | https://openalex.org/C69357855 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5209328532218933 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q163214 |
| concepts[6].display_name | Diffusion |
| concepts[7].id | https://openalex.org/C2781192897 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5072724223136902 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q822050 |
| concepts[7].display_name | White matter |
| concepts[8].id | https://openalex.org/C69990965 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4574015736579895 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q65402698 |
| concepts[8].display_name | Electrical resistivity and conductivity |
| concepts[9].id | https://openalex.org/C89916169 |
| concepts[9].level | 4 |
| concepts[9].score | 0.4480507969856262 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q17014600 |
| concepts[9].display_name | Fractional anisotropy |
| concepts[10].id | https://openalex.org/C85725439 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41794830560684204 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q466686 |
| concepts[10].display_name | Anisotropy |
| concepts[11].id | https://openalex.org/C186060115 |
| concepts[11].level | 1 |
| concepts[11].score | 0.360779345035553 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q30336093 |
| concepts[11].display_name | Biological system |
| concepts[12].id | https://openalex.org/C136229726 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3416747450828552 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q327092 |
| concepts[12].display_name | Biomedical engineering |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.2386264204978943 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.19434598088264465 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C71924100 |
| concepts[15].level | 0 |
| concepts[15].score | 0.16468587517738342 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[15].display_name | Medicine |
| concepts[16].id | https://openalex.org/C120665830 |
| concepts[16].level | 1 |
| concepts[16].score | 0.15231263637542725 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[16].display_name | Optics |
| concepts[17].id | https://openalex.org/C97355855 |
| concepts[17].level | 1 |
| concepts[17].score | 0.13499969244003296 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[17].display_name | Thermodynamics |
| concepts[18].id | https://openalex.org/C126838900 |
| concepts[18].level | 1 |
| concepts[18].score | 0.10247799754142761 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[18].display_name | Radiology |
| concepts[19].id | https://openalex.org/C191897082 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q11467 |
| concepts[19].display_name | Metallurgy |
| concepts[20].id | https://openalex.org/C62520636 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[20].display_name | Quantum mechanics |
| concepts[21].id | https://openalex.org/C86803240 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[21].display_name | Biology |
| concepts[22].id | https://openalex.org/C147789679 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q11372 |
| concepts[22].display_name | Physical chemistry |
| keywords[0].id | https://openalex.org/keywords/diffusion-mri |
| keywords[0].score | 0.8279497623443604 |
| keywords[0].display_name | Diffusion MRI |
| keywords[1].id | https://openalex.org/keywords/conductivity |
| keywords[1].score | 0.7926658391952515 |
| keywords[1].display_name | Conductivity |
| keywords[2].id | https://openalex.org/keywords/microstructure |
| keywords[2].score | 0.5650477409362793 |
| keywords[2].display_name | Microstructure |
| keywords[3].id | https://openalex.org/keywords/materials-science |
| keywords[3].score | 0.5420982837677002 |
| keywords[3].display_name | Materials science |
| keywords[4].id | https://openalex.org/keywords/nuclear-magnetic-resonance |
| keywords[4].score | 0.5260624289512634 |
| keywords[4].display_name | Nuclear magnetic resonance |
| keywords[5].id | https://openalex.org/keywords/magnetic-resonance-imaging |
| keywords[5].score | 0.5240124464035034 |
| keywords[5].display_name | Magnetic resonance imaging |
| keywords[6].id | https://openalex.org/keywords/diffusion |
| keywords[6].score | 0.5209328532218933 |
| keywords[6].display_name | Diffusion |
| keywords[7].id | https://openalex.org/keywords/white-matter |
| keywords[7].score | 0.5072724223136902 |
| keywords[7].display_name | White matter |
| keywords[8].id | https://openalex.org/keywords/electrical-resistivity-and-conductivity |
| keywords[8].score | 0.4574015736579895 |
| keywords[8].display_name | Electrical resistivity and conductivity |
| keywords[9].id | https://openalex.org/keywords/fractional-anisotropy |
| keywords[9].score | 0.4480507969856262 |
| keywords[9].display_name | Fractional anisotropy |
| keywords[10].id | https://openalex.org/keywords/anisotropy |
| keywords[10].score | 0.41794830560684204 |
| keywords[10].display_name | Anisotropy |
| keywords[11].id | https://openalex.org/keywords/biological-system |
| keywords[11].score | 0.360779345035553 |
| keywords[11].display_name | Biological system |
| keywords[12].id | https://openalex.org/keywords/biomedical-engineering |
| keywords[12].score | 0.3416747450828552 |
| keywords[12].display_name | Biomedical engineering |
| keywords[13].id | https://openalex.org/keywords/chemistry |
| keywords[13].score | 0.2386264204978943 |
| keywords[13].display_name | Chemistry |
| keywords[14].id | https://openalex.org/keywords/physics |
| keywords[14].score | 0.19434598088264465 |
| keywords[14].display_name | Physics |
| keywords[15].id | https://openalex.org/keywords/medicine |
| keywords[15].score | 0.16468587517738342 |
| keywords[15].display_name | Medicine |
| keywords[16].id | https://openalex.org/keywords/optics |
| keywords[16].score | 0.15231263637542725 |
| keywords[16].display_name | Optics |
| keywords[17].id | https://openalex.org/keywords/thermodynamics |
| keywords[17].score | 0.13499969244003296 |
| keywords[17].display_name | Thermodynamics |
| keywords[18].id | https://openalex.org/keywords/radiology |
| keywords[18].score | 0.10247799754142761 |
| keywords[18].display_name | Radiology |
| language | en |
| locations[0].id | doi:10.3389/fradi.2025.1492479 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210231800 |
| locations[0].source.issn | 2673-8740 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2673-8740 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Radiology |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Radiology |
| locations[0].landing_page_url | https://doi.org/10.3389/fradi.2025.1492479 |
| locations[1].id | pmid:39917284 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in radiology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39917284 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11794185 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Front Radiol |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11794185 |
| locations[3].id | pmh:oai:doaj.org/article:a164774bdfe04159b49b9ea579219c6f |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].source.host_organization_lineage | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Frontiers in Radiology, Vol 5 (2025) |
| locations[3].landing_page_url | https://doaj.org/article/a164774bdfe04159b49b9ea579219c6f |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5106516918 |
| authorships[0].author.orcid | https://orcid.org/0009-0007-0019-6284 |
| authorships[0].author.display_name | Sasha Hakhu |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I55732556 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States |
| authorships[0].institutions[0].id | https://openalex.org/I55732556 |
| authorships[0].institutions[0].ror | https://ror.org/03efmqc40 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I55732556 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Arizona State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sasha Hakhu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States |
| authorships[1].author.id | https://openalex.org/A5058133357 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9282-7619 |
| authorships[1].author.display_name | Leland Hu |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210127938 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, United States |
| authorships[1].institutions[0].id | https://openalex.org/I4210127938 |
| authorships[1].institutions[0].ror | https://ror.org/03660jn93 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I1330342723, https://openalex.org/I4210125099, https://openalex.org/I4210127938 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Mayo Clinic Hospital |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Leland S. Hu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, United States |
| authorships[2].author.id | https://openalex.org/A5005631326 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6721-1185 |
| authorships[2].author.display_name | Scott C. Beeman |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I55732556 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States |
| authorships[2].institutions[0].id | https://openalex.org/I55732556 |
| authorships[2].institutions[0].ror | https://ror.org/03efmqc40 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I55732556 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Arizona State University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Scott Beeman |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States |
| authorships[3].author.id | https://openalex.org/A5053658175 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9789-2129 |
| authorships[3].author.display_name | Rosalind Sadleir |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I55732556 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States |
| authorships[3].institutions[0].id | https://openalex.org/I55732556 |
| authorships[3].institutions[0].ror | https://ror.org/03efmqc40 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I55732556 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Arizona State University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Rosalind J. Sadleir |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3389/fradi.2025.1492479 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Comparison of modelled diffusion-derived electrical conductivities found using magnetic resonance imaging |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11304 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Advanced Neuroimaging Techniques and Applications |
| related_works | https://openalex.org/W3031573373, https://openalex.org/W2000010321, https://openalex.org/W2125096937, https://openalex.org/W3102902644, https://openalex.org/W4401571379, https://openalex.org/W2391066511, https://openalex.org/W2389794309, https://openalex.org/W2765793352, https://openalex.org/W2358906680, https://openalex.org/W2116365403 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3389/fradi.2025.1492479 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210231800 |
| best_oa_location.source.issn | 2673-8740 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2673-8740 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Radiology |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Radiology |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fradi.2025.1492479 |
| primary_location.id | doi:10.3389/fradi.2025.1492479 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210231800 |
| primary_location.source.issn | 2673-8740 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2673-8740 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Radiology |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Radiology |
| primary_location.landing_page_url | https://doi.org/10.3389/fradi.2025.1492479 |
| publication_date | 2025-01-22 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2058871194, https://openalex.org/W2022981781, https://openalex.org/W2069472142, https://openalex.org/W2062689759, https://openalex.org/W2155732501, https://openalex.org/W2055734602, https://openalex.org/W1985231213, https://openalex.org/W4307846566, https://openalex.org/W3209243150, https://openalex.org/W2896048271, https://openalex.org/W2044092215, https://openalex.org/W4307840487, https://openalex.org/W2775655043, https://openalex.org/W2124496461, https://openalex.org/W2109746046, https://openalex.org/W2796175881, https://openalex.org/W1540481168, https://openalex.org/W1930125884, https://openalex.org/W2735421400, https://openalex.org/W2799580586, https://openalex.org/W1964802316, https://openalex.org/W2058764618, https://openalex.org/W2293178275, https://openalex.org/W3193196087, https://openalex.org/W6870672984, https://openalex.org/W3092762135, https://openalex.org/W2902002977, https://openalex.org/W2032254014, https://openalex.org/W3015618497, https://openalex.org/W2413955537, https://openalex.org/W2312712188, https://openalex.org/W2063133641, https://openalex.org/W2940431267, https://openalex.org/W2009837079, https://openalex.org/W2081237186, https://openalex.org/W2101135654, https://openalex.org/W2133054185, https://openalex.org/W2027703088, https://openalex.org/W1973158444, https://openalex.org/W2127309075, https://openalex.org/W2071881327, https://openalex.org/W2520744072, https://openalex.org/W2005552408, https://openalex.org/W3049304068, https://openalex.org/W2015391962, https://openalex.org/W3104349830, https://openalex.org/W2082801199, https://openalex.org/W3104882764 |
| referenced_works_count | 48 |
| abstract_inverted_index.a | 7 |
| abstract_inverted_index.GM | 163, 186 |
| abstract_inverted_index.MR | 23 |
| abstract_inverted_index.WM | 165, 184 |
| abstract_inverted_index.We | 71 |
| abstract_inverted_index.an | 241 |
| abstract_inverted_index.by | 232 |
| abstract_inverted_index.in | 56, 147, 170, 204, 227 |
| abstract_inverted_index.of | 131, 173, 209, 216, 239 |
| abstract_inverted_index.on | 39 |
| abstract_inverted_index.to | 12, 27, 46, 80, 127, 201 |
| abstract_inverted_index.Our | 222 |
| abstract_inverted_index.SMT | 196, 249 |
| abstract_inverted_index.and | 43, 63, 92, 97, 102, 115, 134, 164, 185, 220 |
| abstract_inverted_index.for | 84, 111, 141, 162, 176, 244 |
| abstract_inverted_index.may | 260 |
| abstract_inverted_index.new | 9 |
| abstract_inverted_index.the | 54, 129, 135, 153, 171, 181, 210, 237 |
| abstract_inverted_index.was | 150 |
| abstract_inverted_index.(GM) | 114 |
| abstract_inverted_index.(WM) | 118 |
| abstract_inverted_index.Each | 156 |
| abstract_inverted_index.Mean | 104 |
| abstract_inverted_index.Soma | 96 |
| abstract_inverted_index.This | 51 |
| abstract_inverted_index.data | 21 |
| abstract_inverted_index.each | 121, 142, 193 |
| abstract_inverted_index.from | 22, 77 |
| abstract_inverted_index.gray | 112 |
| abstract_inverted_index.many | 183 |
| abstract_inverted_index.none | 208 |
| abstract_inverted_index.rely | 38 |
| abstract_inverted_index.used | 72 |
| abstract_inverted_index.were | 109, 125 |
| abstract_inverted_index.with | 67, 167, 213, 253 |
| abstract_inverted_index.(CTI) | 19 |
| abstract_inverted_index.(SMT) | 106 |
| abstract_inverted_index.brain | 87 |
| abstract_inverted_index.model | 243 |
| abstract_inverted_index.other | 257 |
| abstract_inverted_index.range | 130, 172 |
| abstract_inverted_index.study | 52 |
| abstract_inverted_index.their | 65 |
| abstract_inverted_index.three | 85, 154 |
| abstract_inverted_index.using | 120 |
| abstract_inverted_index.while | 207 |
| abstract_inverted_index.white | 116 |
| abstract_inverted_index.across | 59, 152 |
| abstract_inverted_index.adults | 79 |
| abstract_inverted_index.assess | 128 |
| abstract_inverted_index.better | 251, 262 |
| abstract_inverted_index.closer | 200 |
| abstract_inverted_index.matter | 113, 117 |
| abstract_inverted_index.method | 157 |
| abstract_inverted_index.model. | 122, 195 |
| abstract_inverted_index.models | 42, 62, 215, 259 |
| abstract_inverted_index.offers | 6 |
| abstract_inverted_index.tensor | 17 |
| abstract_inverted_index.tissue | 48, 139, 178, 217, 228, 263 |
| abstract_inverted_index.values | 161, 202 |
| abstract_inverted_index.within | 192 |
| abstract_inverted_index.Density | 93, 99 |
| abstract_inverted_index.Despite | 180 |
| abstract_inverted_index.However | 256 |
| abstract_inverted_index.Imaging | 94, 100 |
| abstract_inverted_index.Methods | 70 |
| abstract_inverted_index.Neurite | 89, 98 |
| abstract_inverted_index.Results | 144 |
| abstract_inverted_index.aligned | 212 |
| abstract_inverted_index.between | 137 |
| abstract_inverted_index.disease | 14 |
| abstract_inverted_index.enhance | 13 |
| abstract_inverted_index.extract | 81 |
| abstract_inverted_index.images. | 32 |
| abstract_inverted_index.imaging | 5, 18, 26, 36 |
| abstract_inverted_index.leading | 45 |
| abstract_inverted_index.method. | 143 |
| abstract_inverted_index.methods | 37, 211 |
| abstract_inverted_index.models, | 235 |
| abstract_inverted_index.models. | 155 |
| abstract_inverted_index.models: | 88 |
| abstract_inverted_index.notable | 168 |
| abstract_inverted_index.produce | 261 |
| abstract_inverted_index.tissues | 119, 187 |
| abstract_inverted_index.varying | 40 |
| abstract_inverted_index.yielded | 197 |
| abstract_inverted_index.(NODDI), | 95 |
| abstract_inverted_index.(SANDI), | 101 |
| abstract_inverted_index.However, | 33 |
| abstract_inverted_index.Magnetic | 1 |
| abstract_inverted_index.analyses | 124 |
| abstract_inverted_index.combines | 20 |
| abstract_inverted_index.contrast | 10 |
| abstract_inverted_index.distinct | 159 |
| abstract_inverted_index.findings | 223 |
| abstract_inverted_index.imaging. | 248 |
| abstract_inverted_index.observed | 151, 175 |
| abstract_inverted_index.publicly | 73 |
| abstract_inverted_index.reported | 203 |
| abstract_inverted_index.results. | 255 |
| abstract_inverted_index.specific | 177 |
| abstract_inverted_index.studies, | 206 |
| abstract_inverted_index.tissues, | 166 |
| abstract_inverted_index.Spherical | 103 |
| abstract_inverted_index.alignment | 66, 252 |
| abstract_inverted_index.available | 74 |
| abstract_inverted_index.bilateral | 138, 190 |
| abstract_inverted_index.challenge | 238 |
| abstract_inverted_index.databases | 76 |
| abstract_inverted_index.different | 34, 60, 233 |
| abstract_inverted_index.diffusion | 24, 41, 75, 234 |
| abstract_inverted_index.divergent | 47 |
| abstract_inverted_index.estimates | 149, 199, 230 |
| abstract_inverted_index.evaluates | 64 |
| abstract_inverted_index.examples. | 179 |
| abstract_inverted_index.exhibited | 188 |
| abstract_inverted_index.generated | 231 |
| abstract_inverted_index.highlight | 224 |
| abstract_inverted_index.mechanism | 11 |
| abstract_inverted_index.performed | 126 |
| abstract_inverted_index.predicted | 132, 158 |
| abstract_inverted_index.promising | 8 |
| abstract_inverted_index.selecting | 240 |
| abstract_inverted_index.symmetric | 189 |
| abstract_inverted_index.technique | 105 |
| abstract_inverted_index.Discussion | 219 |
| abstract_inverted_index.Dispersion | 91 |
| abstract_inverted_index.calculated | 110 |
| abstract_inverted_index.conclusion | 221 |
| abstract_inverted_index.diagnosis. | 15 |
| abstract_inverted_index.electrical | 3, 246 |
| abstract_inverted_index.estimates. | 50 |
| abstract_inverted_index.parameters | 83 |
| abstract_inverted_index.Comparative | 123 |
| abstract_inverted_index.Orientation | 90 |
| abstract_inverted_index.Significant | 145 |
| abstract_inverted_index.appropriate | 242 |
| abstract_inverted_index.consistency | 136 |
| abstract_inverted_index.differences | 169 |
| abstract_inverted_index.parameters, | 44 |
| abstract_inverted_index.predictions | 58, 108 |
| abstract_inverted_index.reconstruct | 28 |
| abstract_inverted_index.substantial | 225 |
| abstract_inverted_index.variability | 55, 146 |
| abstract_inverted_index.Conductivity | 16 |
| abstract_inverted_index.Introduction | 0 |
| abstract_inverted_index.conductivity | 4, 31, 49, 57, 107, 148, 160, 198, 229, 247 |
| abstract_inverted_index.demonstrated | 250 |
| abstract_inverted_index.experimental | 68, 205, 254 |
| abstract_inverted_index.investigates | 53 |
| abstract_inverted_index.neurotypical | 78 |
| abstract_inverted_index.underscoring | 236 |
| abstract_inverted_index.variability, | 182 |
| abstract_inverted_index.conductivity. | 218 |
| abstract_inverted_index.discrepancies | 226 |
| abstract_inverted_index.electrodeless | 29 |
| abstract_inverted_index.low-frequency | 30, 245 |
| abstract_inverted_index.observations. | 69 |
| abstract_inverted_index.spectroscopic | 214 |
| abstract_inverted_index.conductivities | 133, 140, 174, 191 |
| abstract_inverted_index.microstructure | 25, 35, 61, 82, 194, 258 |
| abstract_inverted_index.diffusion-based | 86 |
| abstract_inverted_index.discrimination. | 264 |
| abstract_inverted_index.resonance-based | 2 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5053658175 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I55732556 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.5 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| sustainable_development_goals[1].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[1].score | 0.46000000834465027 |
| sustainable_development_goals[1].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.02481192 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |